Purpose: The goal was to capture the transcriptional activity due to over-expression of HER2 protein. We profiled this transcriptional activity using two different RNA-Seq alignment and quantification pipelines. We also used these samples to generate a gene expression signature of HER2 pathway activity. Over-expression was validated using Western blots. Illumina RNA-Seq technology was used to capture the downstream transcriptional activity. Reads were 101 base pairs long and single ended. An R open source package “Rsubread” was used to align and quantify the read using UCSC hg19 annotation. The integer-based gene counts were later normalized in FPKM and TPM . Overall design: A profile of gene expression, downstream of ERBB2/HER2 over-expression, was generated in cells derived from breast and used to generate a gene-expression signature reflective of HER2 pathway activation status.
Alternative preprocessing of RNA-Sequencing data in The Cancer Genome Atlas leads to improved analysis results.
No sample metadata fields
View SamplesThis SuperSeries is composed of the SubSeries listed below.
Role of TAZ as mediator of Wnt signaling.
Cell line, Treatment
View SamplesTo investigate the role of TAZ downstream of APC and beta-catenin in mammary epithelial cells cells, we compared the expression profiles of MCF10-T1k (MII) cells transfected with siControl, siAPC, siAPC+siTAZ, sibeta-catenin, or sibeta-catenin+siTAZ.
Role of TAZ as mediator of Wnt signaling.
Cell line, Treatment
View SamplesTo investigate the role of TAZ downstream of the abberrant Wnt signaling in CRC cells, we compared the expression profiles of parental SW480 cells (empty vector) transfected with siControl, siTAZ, sibeta-catenin or reconstituted with wild type APC and transfected with siControl
Role of TAZ as mediator of Wnt signaling.
Cell line, Treatment
View SamplesThe M1 and the M2 macrophage polarization programs (activated by IFN? and IL-4, respectively) lie at the opposite edges of a continuum of activation states but are frequently co-activated during co-infections and in cancer despite controlling divergent functional responses. Whether these two programs are mutually exclusive, how they influence each other, and whether one represents the prevailing response, are all open questions. Co-administration of IFN? and IL-4 exerted complex inhibitory effects over the M1 and M2 programs at the level of both epigenomic and transcriptional changes. Computational data mining and validation analyses revealed the molecular basis of the differential sensitivity of genes and cis-regulatory elements to the antagonistic effects of the opposite stimulus. For instance, while STAT1 and IRF motifs were associated with robust and IL-4-resistant responses to IFN?, their coexistence with binding sites for some auxiliary transcription factors such as AP-1, generated vulnerability to IL-4-mediated inhibition. These data provide a core mechanistic framework for the integration of signals that control macrophage activation and the starting point for understanding macrophage responses in complex environmental conditions Overall design: Analysis of transcriptional and epigenomic changes in mouse macrophages stimulated with different cytokines or their combinations
Opposing macrophage polarization programs show extensive epigenomic and transcriptional cross-talk.
Specimen part, Cell line, Treatment, Subject
View SamplesEGFR and MEK pathways were activated alone or in combination in human mammary epithelial cells. We profiled the pathway gene expression signatures using RNA-Seq. Overall design: mRNA was extracted from human mammary epithelial cells overexpressing EGFR gene, MEK gene, or EGFR and MEK genes in combination (or GFP control) for RNA-Seq analysis. Experiment was performed in six replicates per condition.
ASSIGN: context-specific genomic profiling of multiple heterogeneous biological pathways.
No sample metadata fields
View SamplesEndometriosis is a complex pathological condition in which multiple components are involved in the disease development and clinical outcome. Endometriosis is mainly an inflammatory codition estrogen-dependent, with unknown pathogenesis, that is characterized by dissemination of edometrium tissue in ectopic position (ovary or pelvic peritoneum). Two main theories rise the pathologic onset: the presence of retrograde menstruation and celomic metaplasia in the pelvic peritoneum, that can occur for development defects. Endometriosis is related not only to genetic or immunological changes and to environmental pollution factors, as the endocrine interferents. The disease phenotype results from multiple events (genetics and enviromental), thus it is difficult to find a single gene as causative while is more probable that a gene network/s might involved in the onset and mantainement of the disease state. The peculiarity of endometriosis rely on the tissue speificity manteinance in the ectopic position, where it responds to the hormone stimuli as the tissue in the eutopic position.
Transcriptional profiling of endometriosis tissues identifies genes related to organogenesis defects.
Specimen part, Disease, Disease stage, Subject
View SamplesThis SuperSeries is composed of the SubSeries listed below.
Genome-wide association between YAP/TAZ/TEAD and AP-1 at enhancers drives oncogenic growth.
Specimen part, Cell line
View SamplesThe goal of this study was to identify YAP/TAZ direct transcriptional targets and transcriptional partners, through ChIP-sequencing and gene expression profiling.
Genome-wide association between YAP/TAZ/TEAD and AP-1 at enhancers drives oncogenic growth.
Specimen part, Cell line
View SamplesThe enzymes of the poly-ADP-ribose polymerase (PARP) super-family control many relevant cellular processes, but a precise understanding of their activities in different physiological or disease contexts is largely incomplete. We found that transcription of several PARP genes was dynamically regulated upon macrophage activation by several inflammatory stimuli. Specifically, PARP14 was strongly induced by endotoxin stimulation and translocated to the nucleus in stimulated cells. Quantitative mass spectrometry analysis showed that PARP14 bound to a group of interferon-stimulated gene (ISG)-encoded proteins, most with an unknown function, and it was required for their nuclear accumulation. Moreover, PARP14 depletion attenuated transcription of primary antiviral response genes regulated by the transcription factor IRF3, including Ifnb1, thus reducing IFNß production and activation of ISGs involved in the secondary antiviral response. Overall, these data hint at a role of PARP14 in the control of antimicrobial responses and specifically in nuclear activities of a subgroup of ISG-encoded proteins. Overall design: mRNA sequencing of differentially expressed genes in PARP14 WT and KO RAW 264.7 cells, upon: no treatment, LPS, Jak inhibitor or LPS plus Jak inhibitor treatment.
PARP14 Controls the Nuclear Accumulation of a Subset of Type I IFN-Inducible Proteins.
Specimen part, Cell line, Treatment, Subject
View Samples