refine.bio
  • Search
      • Normalized Compendia
      • RNA-seq Sample Compendia
  • Docs
  • About
  • My Dataset
github link
Showing
of 234 results
Sort by

Filters

Technology

Platform

accession-icon GSE14640
A condensin-like dosage compensation complex acts at a distance to control expression throughout the genome
  • organism-icon Caenorhabditis elegans
  • sample-icon 26 Downloadable Samples
  • Technology Badge Icon Affymetrix C. elegans Genome Array (celegans)

Description

This SuperSeries is composed of the SubSeries listed below.

Publication Title

A condensin-like dosage compensation complex acts at a distance to control expression throughout the genome.

Sample Metadata Fields

No sample metadata fields

View Samples
accession-icon GSE14649
DCC binding and function (Expression Analysis)
  • organism-icon Caenorhabditis elegans
  • sample-icon 26 Downloadable Samples
  • Technology Badge Icon Affymetrix C. elegans Genome Array (celegans)

Description

In many species, a dosage compensation complex (DCC) is targeted to X chromosomes of one sex to equalize levels of X gene products between males (1X) and females (2X). Here we identify cis-acting regulatory elements that target the C. elegans X chromosome for repression by the DCC. The DCC binds to discrete, dispersed sites on X of two types. rex sites recruit the DCC in an autonomous, DNA sequence-dependent manner using a 12 bp consensus motif that is enriched on X. This motif is critical for DCC binding, is clustered in rex sites, and confers much of X-chromosome specificity. Motif variants enriched on X by 3.8-fold or more are highly predictive (95%) for rex sites. In contrast, dox sites lack the X-enriched variants and cannot bind the DCC when detached from X. dox sites are more prevalent than rex sites and, unlike rex sites, reside preferentially in promoters of some expressed genes. These findings fulfill predictions for a targeting model in which the DCC binds to recruitment sites on X and disperses to discrete sites lacking autonomous recruitment ability. To relate DCC binding to function, we identified dosage-compensated and non-compensated genes on X. Unexpectedly, many genes of both types have bound DCC, but many do not, suggesting the DCC acts over long distances to repress X gene expression. Remarkably, the DCC binds to autosomes, but at far fewer sites and rarely at consensus motifs. DCC disruption causes opposite effects on expression of X and autosomal genes. The DCC thus acts at a distance to impact expression throughout the genome.

Publication Title

A condensin-like dosage compensation complex acts at a distance to control expression throughout the genome.

Sample Metadata Fields

No sample metadata fields

View Samples
accession-icon SRP067243
Genome-wide landscape and functional necessity of heart enhancers
  • organism-icon Mus musculus
  • sample-icon 20 Downloadable Samples
  • Technology Badge IconIllumina HiSeq 2000

Description

Analysis of the transcriptional changes in the heart resulting from the loss of cardiac enhancers. As there remains a limited understanding of the phenotypic consequences of enhancer mutations, we examined the impact of loss of function mutations by deleting two enhancers near heart disease genes in mice. In both cases, we observed loss of target gene expression, as well as cardiac phenotypes consistent with heart disease in humans, highlighting the functional importance of enhancers for normal heart function, as well as the potential contribution of enhancer mutations to heart disease. Overall design: Hearts were dissected from wild-type and enhancer-null mice (either embryonic or adult) and processed for deep RNA-seq analysis.

Publication Title

Genome-wide compendium and functional assessment of in vivo heart enhancers.

Sample Metadata Fields

Sex, Specimen part, Cell line, Subject

View Samples
accession-icon SRP178051
Toxic C9orf72 poly(PR) binds heterochromatin, disrupts HP1a and causes dsRNA accumulation
  • organism-icon Mus musculus
  • sample-icon 19 Downloadable Samples
  • Technology Badge IconIllumina HiSeq 2000

Description

How G4C2 repeat expansions in C9orf72 cause frontotemporal dementia (FTD) and amyotrophic lateral sclerosis (ALS) is not understood. Here, we report the first mouse model to express poly(PR), a dipeptide repeat protein synthesized from expanded G4C2 repeats. Expression of GFP-(PR)50 throughout the mouse brain yielded progressive brain atrophy, neuron5 loss, loss of poly(PR)-positive cells and gliosis, culminating in motor and memory impairments. We found that poly(PR) bound DNA, localized to heterochromatin, and caused abnormal histone methylation, lamin invaginations, decreases in HP1a expression, and disruptions of HP1a liquid phases. These aberrations of histone methylation, lamins and HP1a, which regulate heterochromatin structure and gene expression, were accompanied by repetitive element10 expression and double-stranded RNA accumulation. Thus, we uncover new mechanisms by which poly(PR) contributes to c9FTD/ALS pathogenesis. Overall design: Examination of transcriptome profiles using RNA-seq on 3 month old mice expressing PR and GR polypetides with an AAV expression vector. The Poly(PR) analysis consisted of 7 mice expressing AAV-GFP-(PR)50 and 4 AAV-GFP harvest-matched controls. The Poly(GR) analysis consisted of 4 mice expressing AAV-GFP-(GR)100 and 4 AAV-GFP harvest-matched controls.

Publication Title

Heterochromatin anomalies and double-stranded RNA accumulation underlie <i>C9orf72</i> poly(PR) toxicity.

Sample Metadata Fields

Sex, Age, Cell line, Subject

View Samples
accession-icon GSE29759
The Role of microRNAs in Neural Stem Cell-supported Endothelial Morphogenesis
  • organism-icon Mus musculus
  • sample-icon 24 Downloadable Samples
  • Technology Badge Icon Affymetrix Mouse Genome 430 2.0 Array (mouse4302)

Description

MicroRNA microarrays and RNA expression arrays were used to identify functional signaling between neural stem cell progenitor cells (NSPC) and brain endothelial cells (EC) that are critical during embryonic development and tissue repair following brain injury.

Publication Title

The role of microRNAs in neural stem cell-supported endothelial morphogenesis.

Sample Metadata Fields

Specimen part, Disease, Treatment

View Samples
accession-icon GSE88966
Depot dependent effects of dexamethasone on gene expression in human omental and abdominal subcutaneous adipose tissues from obese women.
  • organism-icon Homo sapiens
  • sample-icon 26 Downloadable Samples
  • Technology Badge Icon Affymetrix Human Gene 1.0 ST Array (hugene10st)

Description

We used microarrays to identify transcripts regulated by dexamethasone in omental (Om) and abdominal subcutaneous (Abdsc) adipose tissues of severely obese females obtained during elective surgeries.

Publication Title

Depot Dependent Effects of Dexamethasone on Gene Expression in Human Omental and Abdominal Subcutaneous Adipose Tissues from Obese Women.

Sample Metadata Fields

Specimen part, Disease stage, Treatment

View Samples
accession-icon GSE42997
The ISWI ATPase Snf2L is required for superovulation and regulates Fgl2 in differentiating mouse granulosa cells
  • organism-icon Mus musculus
  • sample-icon 12 Downloadable Samples
  • Technology Badge Icon Affymetrix Mouse Genome 430 2.0 Array (mouse4302)

Description

We investigate the role of Snf2l in ovaries by characterizing a mouse bearing an inactivating deletion on the ATPase domain of Snf2l (Ex6DEL). Snf2l mutant mice produce significantly fewer eggs than control mice when superovulated. Thus, gonadotropin stimulation leads to a significant deficit in secondary follicles and an increase in abnormal antral follicles. We profiled the expression of granulosa cells from Snf2l WT and Ex6DEL mice treated with pregnant mares' serum gonadotropin followed by human chorionic gonadotropin

Publication Title

The imitation switch ATPase Snf2l is required for superovulation and regulates Fgl2 in differentiating mouse granulosa cells.

Sample Metadata Fields

Specimen part

View Samples
accession-icon GSE35766
Identification of the cortical neurons that mediate antidepressant responses
  • organism-icon Mus musculus
  • sample-icon 30 Downloadable Samples
  • Technology Badge Icon Affymetrix Mouse Genome 430 2.0 Array (mouse4302)

Description

This SuperSeries is composed of the SubSeries listed below.

Publication Title

Identification of the cortical neurons that mediate antidepressant responses.

Sample Metadata Fields

Specimen part, Treatment

View Samples
accession-icon GSE20854
EGFR Isoforms and Gene Regulation in Human Endometrial Cancer Cells
  • organism-icon Homo sapiens
  • sample-icon 24 Downloadable Samples
  • Technology Badge Icon Affymetrix Human Genome U133 Plus 2.0 Array (hgu133plus2)

Description

Microarrays were used to analyze differential gene expression and to help determine the efficacy of Iressa (gefitinib), a tyrosine kinase inhibitor, on endometrial cancer cells.

Publication Title

EGFR isoforms and gene regulation in human endometrial cancer cells.

Sample Metadata Fields

Specimen part, Cell line

View Samples
accession-icon GSE18235
Effect of 10 Cigarette Smoke Condensates on Primary Human Airway Epithelial Cells
  • organism-icon Homo sapiens
  • sample-icon 21 Downloadable Samples
  • Technology Badge Icon Affymetrix Human Genome U133 Plus 2.0 Array (hgu133plus2)

Description

Nine cigarette smoke condensates (CSCs) were produced under a standard ISO smoking machine regimen and one was produced by a more intense smoking machine regimen. These CSCs were used to treat primary normal human bronchial epithelial cells for 18 hours.

Publication Title

Effects of 10 cigarette smoke condensates on primary human airway epithelial cells by comparative gene and cytokine expression studies.

Sample Metadata Fields

Specimen part

View Samples
...

refine.bio is a repository of uniformly processed and normalized, ready-to-use transcriptome data from publicly available sources. refine.bio is a project of the Childhood Cancer Data Lab (CCDL)

fund-icon Fund the CCDL

Developed by the Childhood Cancer Data Lab

Powered by Alex's Lemonade Stand Foundation

Cite refine.bio

Casey S. Greene, Dongbo Hu, Richard W. W. Jones, Stephanie Liu, David S. Mejia, Rob Patro, Stephen R. Piccolo, Ariel Rodriguez Romero, Hirak Sarkar, Candace L. Savonen, Jaclyn N. Taroni, William E. Vauclain, Deepashree Venkatesh Prasad, Kurt G. Wheeler. refine.bio: a resource of uniformly processed publicly available gene expression datasets.
URL: https://www.refine.bio

Note that the contributor list is in alphabetical order as we prepare a manuscript for submission.

BSD 3-Clause LicensePrivacyTerms of UseContact