refine.bio
  • Search
      • Normalized Compendia
      • RNA-seq Sample Compendia
  • Docs
  • About
  • My Dataset
github link
Showing
of 72 results
Sort by

Filters

Technology

Platform

accession-icon SRP158524
Ewing sarcoma resistance to SP-2509 is not mediated through KDM1A/LSD1 mutation I
  • organism-icon Homo sapiens
  • sample-icon 24 Downloadable Samples
  • Technology Badge IconIllumina HiSeq 2000

Description

The transcriptional profile of A673 parental and SP-2509 Drug resistant cells treated with DMSO and SP-2509 (2uM 48hrs) Overall design: A673 parental and SP-2509 Drug resistant cells treated with DMSO and SP-2509 (2uM 48hrs)

Publication Title

Ewing sarcoma resistance to SP-2509 is not mediated through KDM1A/LSD1 mutation.

Sample Metadata Fields

Treatment, Subject

View Samples
accession-icon SRP158525
Ewing sarcoma resistance to SP-2509 is not mediated through KDM1A/LSD1 mutation II
  • organism-icon Homo sapiens
  • sample-icon 9 Downloadable Samples
  • Technology Badge IconIllumina HiSeq 2000

Description

The transcriptional profile of A673 parental, and SP-2509 drug resistant washout cells (4 and 6 months) Overall design: Following generation of A673 SP-2509 drug resistant cells (chronic exposure for 7 months), drug was withdrawn with cell pellets collected 4 and 6 months after removal.

Publication Title

Ewing sarcoma resistance to SP-2509 is not mediated through KDM1A/LSD1 mutation.

Sample Metadata Fields

Disease, Treatment, Subject

View Samples
accession-icon SRP106817
Therapeutic targeting of KDM1A/LSD1 in Ewing sarcoma engages the ER-stress response I
  • organism-icon Homo sapiens
  • sample-icon 36 Downloadable Samples
  • Technology Badge IconIllumina HiSeq 4000

Description

The purpose of this study was to define biomarkers of sensitivty and mechanisms of resistance to the KDM1A/LSD1 inhibtor SP-2509 (HCI-2509) in Ewing sarcoma cell lines. We report that regardless of drug sensitivity all cell lines engage the UPR and ER-stress response following treatment with SP-2509 resulting in apoptotic cytotoxicity. In addition hypersentsitive cell lines shared a common basal transcriptnomic profile, with hypersensitive cell lines signficantly inducing ETS1 which was not observed in sensitive cell lines. Overall design: 6 Ewing sarcoma cell lines were treated with either vehicle control (DMSO) or the reversible LSD1/KDM1A inhibitor SP-2509 (2uM) for 48hrs. Three SP-2509 hypersensitive (IC50< 300nM)(A673, TC32, TC252) and three SP-2509 sensitive (IC50>900nM) (EWS-502, ES-2 and TC71) cell lines were investigated. Paired RNA from three indpendent experiments per cell line was analyzed.

Publication Title

Therapeutic Targeting of KDM1A/LSD1 in Ewing Sarcoma with SP-2509 Engages the Endoplasmic Reticulum Stress Response.

Sample Metadata Fields

Treatment, Subject

View Samples
accession-icon GSE48296
Expression data from human sarcoma patient samples treated with either vehicle control or Nutlin-3a
  • organism-icon Homo sapiens
  • sample-icon 16 Downloadable Samples
  • Technology Badge Icon Affymetrix Human Gene 1.0 ST Array (hugene10st)

Description

This study has examined the molecular mechanisms underlying sensitivity of sarcomas to Nutlin-3a, a non-genotoxic activator of the p53 pathway. Human patient material was collected immediately following surgical resection, dissected into small pieces and ex planted onto gelatin sponges immersed in media containing either vehicle control or Nutlin-3a (10uM and/or 50uM) for 48 hours.

Publication Title

Nutlin-3a efficacy in sarcoma predicted by transcriptomic and epigenetic profiling.

Sample Metadata Fields

No sample metadata fields

View Samples
accession-icon GSE7891
Trancriptome profiling of rat inner medullary collecting duct
  • organism-icon Rattus norvegicus
  • sample-icon 6 Downloadable Samples
  • Technology Badge Icon Affymetrix Rat Genome 230 2.0 Array (rat2302)

Description

Identification of gene expressed in the enriched inner medullary collecting duct cells in rat.

Publication Title

Transcriptional profiling of native inner medullary collecting duct cells from rat kidney.

Sample Metadata Fields

Sex, Age, Specimen part

View Samples
accession-icon GSE54501
Gene expression profiles in the colon of APC and Olfm4 double mutant mice
  • organism-icon Mus musculus
  • sample-icon 15 Downloadable Samples
  • Technology Badge Icon Affymetrix Mouse Genome 430 2.0 Array (mouse4302)

Description

APC mutant mice develop polys in the intestine, but not carcinoma. We found that additional deletion of Olfm4 gene induced carcinoma formation in the distal colon. To explore the molecular mechanism, we performed cDNA microarray to understand the gene expression files in the tumor tissues compared with WT, APC mutant and Olfm4 mutant mice.

Publication Title

Olfactomedin 4 deletion induces colon adenocarcinoma in Apc&lt;sup&gt;Min/+&lt;/sup&gt; mice.

Sample Metadata Fields

Sex, Age, Specimen part

View Samples
accession-icon SRP044099
The contribution of cohesin-SA1 to chromatin architecture and gene expression in two murine tissues
  • organism-icon Mus musculus
  • sample-icon 8 Downloadable Samples
  • Technology Badge Icon

Description

Cohesin, which consists of SMC1, SMC3, Rad21 and either SA1 or SA2, topologically embraces the chromatin fibers to hold sister chromatids together and to stabilize chromatin loops. Increasing evidence indicates that these loops are the organizing principle of higher-order chromatin architecture, which in turn is critical for gene expression. To determine how cohesin contributes to the establishment of tissue-specific transcriptional programs, we compared genome-wide cohesin distribution, gene expression and chromatin architecture in cerebral cortex and pancreas from adult mice. More than one third of cohesin binding sites differ between the two tissues and these are enriched at the regulatory regions of tissue-specific genes. Cohesin colocalizes extensively with the CCCTC-binding factor (CTCF). Cohesin/CTCF sites at active enhancers and promoters contain, at least, cohesin-SA1 whereas either cohesin-SA1 or cohesin-SA2 are present at active promoters independently of CTCF. Analyses of chromatin contacts at the Protocadherin gene cluster and the Regenerating islet-derived (Reg) gene cluster, mostly expressed in brain and pancreas respectively, revealed remarkable differences in the architecture of these loci in the two tissues that correlate with the presence of cohesin. Moreover, we found decreased binding of cohesin and reduced transcription of the Reg genes in the pancreas of SA1 heterozygous mice. Given that Reg proteins are involved in the control of inflammation in pancreas, such reduction may contribute to the increased incidence of pancreatic cancer reported in these animals. Overall design: Examination of the relationship between gene expression, genome wide cohesin distribution and chromatin structure

Publication Title

The contribution of cohesin-SA1 to gene expression and chromatin architecture in two murine tissues.

Sample Metadata Fields

No sample metadata fields

View Samples
accession-icon SRP132298
Targeting CREBBP/EP300 bromodomains in cancer
  • organism-icon Homo sapiens
  • sample-icon 10 Downloadable Samples
  • Technology Badge IconIllumina HiSeq 2000

Description

Changes in gene expression caused by CREBBP/EP300 bromodomain inhibitors in a CML cell line Overall design: K562 cells were treated with CBP30 and I-CBP112 and changes in gene expression were evaluated by RNA-seq

Publication Title

CREBBP/EP300 bromodomains are critical to sustain the GATA1/MYC regulatory axis in proliferation.

Sample Metadata Fields

Cell line, Treatment, Subject

View Samples
accession-icon SRP068961
Targeting CREBBP/EP300 in cancer
  • organism-icon Homo sapiens
  • sample-icon 8 Downloadable Samples
  • Technology Badge IconIlluminaHiSeq2000

Description

Antiprolifereative effects of CREBBP/EP300 inhibitors were tested in human leukemia and lymphoma cell lines and the molecular mechanisms responsible for such effects were explored. Overall design: K562 cells were treated with CBP-30 (CREBBP/EP300 bromodomain inhibitor), C646 (CREBBP/EP300 HAT activity inhibitor) and JQ1 (BRD4 inhibitor) and changes in gene expression were evaluated by RNA-seq.

Publication Title

CREBBP/EP300 bromodomains are critical to sustain the GATA1/MYC regulatory axis in proliferation.

Sample Metadata Fields

No sample metadata fields

View Samples
accession-icon SRP017484
RNA-Seq of head tissue from Drosophila melanogaster Wild Type and Adar5G1dAdar-/- mutant
  • organism-icon Drosophila melanogaster
  • sample-icon 2 Downloadable Samples
  • Technology Badge IconIllumina Genome Analyzer II

Description

Purpose: Validation of Drosophila A-to-I editing sites Methods: We collected heads of 5 day old male dAdar-/- mutant (y, Adar5G1, w)26 and wild type (w1118) flies. Poly(A)+ RNA was used to prepare RNA-seq libraries which were subsequently sequenced single-end by an Illumina GAII Results:We builded a framework to identify RNA editing events using RNA-seq data alone in Drosophila. To validate whether the identified A-to-G sites were bona fide A-to-I editing events, we performed RNA-seq for the D.melanogaster wild-type strain (w1118) and for the Adar5G1 null mutant that eliminates RNA editing. We found that our method achieved high accuracy; 98.2% of all A-to-G sites showed only adenosine in the Adar5G1 sample Conclusions: We anticipate that our method will be very effective in the future to identify RNA editing events in different species. Overall design: mRNA profiles of heads of 5 day old male dAdar-/- mutant (y, Adar5G1, w)26 and wild type (w1118) flies

Publication Title

Identifying RNA editing sites using RNA sequencing data alone.

Sample Metadata Fields

Age, Specimen part, Cell line, Subject

View Samples
...

refine.bio is a repository of uniformly processed and normalized, ready-to-use transcriptome data from publicly available sources. refine.bio is a project of the Childhood Cancer Data Lab (CCDL)

fund-icon Fund the CCDL

Developed by the Childhood Cancer Data Lab

Powered by Alex's Lemonade Stand Foundation

Cite refine.bio

Casey S. Greene, Dongbo Hu, Richard W. W. Jones, Stephanie Liu, David S. Mejia, Rob Patro, Stephen R. Piccolo, Ariel Rodriguez Romero, Hirak Sarkar, Candace L. Savonen, Jaclyn N. Taroni, William E. Vauclain, Deepashree Venkatesh Prasad, Kurt G. Wheeler. refine.bio: a resource of uniformly processed publicly available gene expression datasets.
URL: https://www.refine.bio

Note that the contributor list is in alphabetical order as we prepare a manuscript for submission.

BSD 3-Clause LicensePrivacyTerms of UseContact