refine.bio
  • Search
      • Normalized Compendia
      • RNA-seq Sample Compendia
  • Docs
  • About
  • My Dataset
github link
Showing
of 46 results
Sort by

Filters

Technology

Platform

accession-icon GSE15757
PRC2 in Ewing tumors
  • organism-icon Homo sapiens
  • sample-icon 9 Downloadable Samples
  • Technology Badge Icon Affymetrix Human Genome U133A Array (hgu133a)

Description

We found the PRC2 component EZH2 to be upregulated by the pathognomonic fusion oncogene EWS-FLI1 in Ewing tumors and mesenchymal stem cells (Richter GH et al., Proc Natl Acad Sci U S A. 2009;106:5324-9). Downregulation of EZH2 by RNA interference in Ewing tumor cell lines suppressed oncogenic transformation in vitro and in vivo. These data suggest that EZH2 might play a central role in Ewing Tumor pathology.

Publication Title

Epigenetic maintenance of stemness and malignancy in peripheral neuroectodermal tumors by EZH2.

Sample Metadata Fields

No sample metadata fields

View Samples
accession-icon GSE36100
DKK2 Mediates Osteolysis, Invasiveness, and Metastatic Spread in Ewing Sarcoma
  • organism-icon Homo sapiens
  • sample-icon 6 Downloadable Samples
  • Technology Badge Icon Affymetrix Human Gene 1.0 ST Array (hugene10st)

Description

Ewing sarcoma, an osteolytic malignancy that mainly affects children and young adults, is characterized

Publication Title

DKK2 mediates osteolysis, invasiveness, and metastatic spread in Ewing sarcoma.

Sample Metadata Fields

Cell line

View Samples
accession-icon GSE34670
Gene expression in pediatric cALL
  • organism-icon Homo sapiens
  • sample-icon 37 Downloadable Samples
  • Technology Badge Icon Affymetrix Human Genome U133A Array (hgu133a)

Description

Common ALL (cALL) is the most frequent entity of childhood ALL and carries an early pre-B cell phenotype. Expression patterns of 25 pediatric cALL samples were analyzed by use of high-density DNA microarrays HG-U133A.

Publication Title

MondoA is highly overexpressed in acute lymphoblastic leukemia cells and modulates their metabolism, differentiation and survival.

Sample Metadata Fields

Specimen part

View Samples
accession-icon GSE33967
MondoA is highly expressed in acute lymphoblastic leukemia and modulates metabolism, differentiation and survival
  • organism-icon Homo sapiens
  • sample-icon 5 Downloadable Samples
  • Technology Badge Icon Affymetrix Human Gene 1.0 ST Array (hugene10st)

Description

Acute lymphoblastic leukemia (ALL) is the most common childhood cancer. To identify novel candidates for targeted treatment of childhood ALL, we performed a comprehensive transcriptome analysis yielding a set of genes specifically overexpressed in ALL. Among them we identified MondoA - a transcription factor regulating glycolysis in response to glucose availability. Here, we confirm that MondoA is highly overexpressed ALL, whereas the MondoA paralog, MondoB, is not expressed. Expression studies revealed that MondoA is not regulated by glucose availability in leukemia cells, but by the presence of lactate. An in silico MondoA promoter analysis identified two methylation-prone CpG-islands and four conserved binding sites for runt-related transcription factor 1 (RUNX1). In fact, MondoA and RUNX1 are significantly coexpressed in leukemia and experimental blockage of DNA methylation leads to a further induction of MondoA. In addition, using microarray profiling, gene-set enrichment analysis and RNA interference we provide for the first time evidence that MondoA expression not only increases glucose catabolism, but also maintains a more immature ALL phenotype, which is associated with enhanced survival and clonogenicity of leukemia cells. These data hint to an important contribution of MondoA to leukemia aggressiveness validating MondoA as an attractive candidate for targeted treatment of ALL.

Publication Title

MondoA is highly overexpressed in acute lymphoblastic leukemia cells and modulates their metabolism, differentiation and survival.

Sample Metadata Fields

Specimen part, Cell line

View Samples
accession-icon GSE12692
EZH2 is a mediator of EWS-FLI1 driven tumor growth blocking endothelial and neuro-ectodermal differentiation
  • organism-icon Homo sapiens
  • sample-icon 9 Downloadable Samples
  • Technology Badge Icon Affymetrix Human Genome U133A Array (hgu133a)

Description

Ewing Tumors (ET) are highly malignant tumors, localized in bone or soft tissue and are molecularly defined by ews/ets translocations. We identified histone methyl-transferase Enhancer of Zeste, Drosophila, Homolog 2 (EZH2) to be increased in ET. EZH2s suppressive activity maintains stemness in normal and malignant cells. Here we found EZH2 to be upregulated by the pathognomonic fusion oncogene EWS-FLI1 in ET and mesenchymal stem cells. Downregulation of EZH2 by RNA interference in ET suppressed oncogenic transformation by inhibiting clonogenicity in vitro. Similarly, tumor development and metastasis in immunodeficient Rag2-/-C-/- mice was suppressed. EZH2-mediated gene silencing was shown to be dependent on histone deacetylase (HDAC) activity. Subsequent microarray analysis of EZH2 knock down, HDAC-inhibitor treatment and confirmation in independent assays revealed an undifferentiated phenotype maintained by EZH2 in ET. Downregulation of EZH2 decreased histone H3 lysine 27 trimethylation (H3K27me3) at target loci. EZH2 regulated stemness genes such as nerve growth factor receptor (NGFR) as well as genes involved in neuroectodermal differentiation (EMP1, EPHB2, GFAP, GAP43). These data suggest that EZH2 might play a central role in Ewing Tumor pathology shaping the oncogenicity and stem cell phenotype of this tumor presumably by epigenetic regulation.

Publication Title

EZH2 is a mediator of EWS/FLI1 driven tumor growth and metastasis blocking endothelial and neuro-ectodermal differentiation.

Sample Metadata Fields

No sample metadata fields

View Samples
accession-icon GSE10377
Strains for eQTL CNV Analysis
  • organism-icon Mus musculus
  • sample-icon 5 Downloadable Samples
  • Technology Badge Icon Affymetrix Mouse Genome 430 2.0 Array (mouse4302)

Description

Background

Publication Title

Expression quantitative trait loci mapping identifies new genetic models of glutathione S-transferase variation.

Sample Metadata Fields

No sample metadata fields

View Samples
accession-icon GSE24006
A Leukemic Stem Cell Expression Signature is Associated with Clinical Outcomes in Acute Myeloid Leukemia
  • organism-icon Homo sapiens
  • sample-icon 45 Downloadable Samples
  • Technology Badge Icon Affymetrix Human Genome U133 Plus 2.0 Array (hgu133plus2)

Description

Context: In many cancers, specific subpopulations of cells appear to be uniquely capable of initiating and maintaining tumors. The strongest support for this cancer stem cell model comes from transplantation assays in immune-deficient mice indicating that human acute myeloid leukemia (AML) is organized as a cellular hierarchy driven by self-renewing leukemia stem cells (LSC). This model has significant implications for the development of novel therapies, but its clinical significance remains unclear.

Publication Title

Association of a leukemic stem cell gene expression signature with clinical outcomes in acute myeloid leukemia.

Sample Metadata Fields

Disease, Disease stage, Subject

View Samples
accession-icon GSE21061
Endogenous overexpression of Poplar MYB186 increases trichome density, improves growth rate and insect pest resistance
  • organism-icon Populus tremula x populus alba
  • sample-icon 6 Downloadable Samples
  • Technology Badge Icon Affymetrix Poplar Genome Array (poplar)

Description

Trichomes are specialised epidermal cells that generally play a role in reducing transpiration and act as a deterrent to herbivory. In a screen of activation tagged Populus tremula x P. alba 717-1B4 trees, we identified a mutant line, fuzzy, with increased foliar trichome density. This mutant also had a 35% increase in growth rate and a 200% increase in the rate of photosynthesis as compared to wild-type poplar. The fuzzy mutant had significant resistance to feeding by larvae of the white spotted tussock moth (Orgyia leucostigma), a generalist insect pest of poplar trees. The fuzzy phenotype is attributable to activation tagging and increased expression of the gene encoding PtaMYB186, which is related to Arabidopsis thaliana MYB106, a known regulator of trichome initiation. The fuzzy phenotype can be recapitulated by overexpressing PtaMYB186 in poplar. PtaMYB186 overexpression results in reconfiguration of the poplar transcriptome, with changes in the transcript abundance of suites of genes that are related to trichome differentiation. It is notable that this gene responsible for trichome development also altered traits related to growth rate and pest resistance, suggesting that non-intuitive facets of plant development might be useful targets for plant improvement.

Publication Title

Endogenous overexpression of Populus MYB186 increases trichome density, improves insect pest resistance, and impacts plant growth.

Sample Metadata Fields

Specimen part

View Samples
accession-icon GSE6476
Effect of chronic fluoxetine treatment on hippocampal gene expression
  • organism-icon Mus musculus
  • sample-icon 4 Downloadable Samples
  • Technology Badge Icon Affymetrix Mouse Genome 430 2.0 Array (mouse4302)

Description

Both the mechanism of action and the factors determining the behavioral response to antidepressants are unknown. It has been shown that antidepressant treatment promotes the proliferation and survival of hippocampal neurons via enhanced serotonergic signaling, but it is still unclear whether hippocampal neurogenesis is responsible for the behavioral response to antidepressants. Furthermore, a large subpopulation of patients fails to respond to antidepressant treatment due to presumed underlying genetic factors. In the present study, we have used the phenotypic and genotypic variability of inbred mouse strains to show that there is a genetic component to both the behavioral and neurogenic effects of chronic fluoxetine treatment, and that this antidepressant induces an increase in hippocampal cell proliferation only in the strains that also show a positive behavioral response to treatment. The behavioral and neurogenic responses are associated with an upregulation of genes known to promote neuronal proliferation and survival. These results suggest that inherent genetic predisposition to increased serotonin-induced neurogenesis is a determinant of antidepressant efficacy.

Publication Title

Genetic regulation of behavioral and neuronal responses to fluoxetine.

Sample Metadata Fields

Sex, Treatment

View Samples
accession-icon SRP011185
RAMPAGE dataset for the human K562 cell line
  • organism-icon Homo sapiens
  • sample-icon 1 Downloadable Sample
  • Technology Badge IconIllumina Genome Analyzer IIx

Description

5''-complete cDNA sequencing on ribosome-depleted total RNA from the human K562 cell line. Provides high-quality, genome-wide single-base resolution profiling of transcription start sites and their expression levels. Overall design: This dataset represents a whole-genome, single-base resolution profiling of transcription start site (TSS) expression in the human K562 cell line. These profiles were established using RAMPAGE, a high-throughput, high-accuracy 5''-complete cDNA sequencing method implemented on the Illumina platform. The data was analyzed using custom scripts and algorithms that are all available upon request.

Publication Title

High-fidelity promoter profiling reveals widespread alternative promoter usage and transposon-driven developmental gene expression.

Sample Metadata Fields

Cell line, Subject

View Samples
...

refine.bio is a repository of uniformly processed and normalized, ready-to-use transcriptome data from publicly available sources. refine.bio is a project of the Childhood Cancer Data Lab (CCDL)

fund-icon Fund the CCDL

Developed by the Childhood Cancer Data Lab

Powered by Alex's Lemonade Stand Foundation

Cite refine.bio

Casey S. Greene, Dongbo Hu, Richard W. W. Jones, Stephanie Liu, David S. Mejia, Rob Patro, Stephen R. Piccolo, Ariel Rodriguez Romero, Hirak Sarkar, Candace L. Savonen, Jaclyn N. Taroni, William E. Vauclain, Deepashree Venkatesh Prasad, Kurt G. Wheeler. refine.bio: a resource of uniformly processed publicly available gene expression datasets.
URL: https://www.refine.bio

Note that the contributor list is in alphabetical order as we prepare a manuscript for submission.

BSD 3-Clause LicensePrivacyTerms of UseContact