refine.bio
  • Search
      • Normalized Compendia
      • RNA-seq Sample Compendia
  • Docs
  • About
  • My Dataset
github link
Showing
of 32 results
Sort by

Filters

Technology

Platform

accession-icon GSE30377
Human Hematopoietic and Leukemic Stem Cell Gene Expression Profiles
  • organism-icon Homo sapiens
  • sample-icon 116 Downloadable Samples
  • Technology Badge Icon Affymetrix Human Genome U133A Array (hgu133a), Affymetrix HT Human Genome U133A Array (hthgu133a), Affymetrix Human Genome U133B Array (hgu133b)

Description

This SuperSeries is composed of the SubSeries listed below.

Publication Title

Stem cell gene expression programs influence clinical outcome in human leukemia.

Sample Metadata Fields

Specimen part

View Samples
accession-icon GSE30375
Gene expression data from sorted and unsorted primary human acute myeloid leukemia (AML) samples
  • organism-icon Homo sapiens
  • sample-icon 92 Downloadable Samples
  • Technology Badge Icon Affymetrix Human Genome U133A Array (hgu133a), Affymetrix HT Human Genome U133A Array (hthgu133a)

Description

Experiments using xenografts show that some solid tumours and leukemias are organized as cellular hierarchies sustained by cancer stem cells (CSC). Despite promise, the relevance of the CSC model to human disease remains uncertain. Here we show that acute myeloid leukemia (AML) follows a CSC model based on sorting multiple populations from each of 16 primary human AML samples and identifying which contain leukemia stem cells (LSC) using a sensitive xenograft assay. Analysis of gene expression from all functionally validated populations yielded an LSC-specific signature. Similarly, a hematopoietic stem cell (HSC) gene signature was established. Bioinformatic analysis identified a core transcriptional program shared by LSC and HSC, revealing the molecular machinery underlying stemness properties. Both stem cell programs were highly significant independent predictors of patient survival and also found in existing prognostic signatures. Thus, determinants of stemness influence clinical outcome of AML establishing that LSC are clinically relevant and not mere artifacts of xenotransplantation.

Publication Title

Stem cell gene expression programs influence clinical outcome in human leukemia.

Sample Metadata Fields

No sample metadata fields

View Samples
accession-icon GSE30376
Gene expression data from sorted primary human cord blood samples
  • organism-icon Homo sapiens
  • sample-icon 24 Downloadable Samples
  • Technology Badge Icon Affymetrix Human Genome U133A Array (hgu133a), Affymetrix Human Genome U133B Array (hgu133b)

Description

Experiments using xenografts show that some solid tumours and leukemias are organized as cellular hierarchies sustained by cancer stem cells (CSC). Despite promise, the relevance of the CSC model to human disease remains uncertain. Here we show that acute myeloid leukemia (AML) follows a CSC model based on sorting multiple populations from each of 16 primary human AML samples and identifying which contain leukemia stem cells (LSC) using a sensitive xenograft assay. Analysis of gene expression from all functionally validated populations yielded an LSC-specific signature. Similarly, a hematopoietic stem cell (HSC) gene signature was established. Bioinformatic analysis identified a core transcriptional program shared by LSC and HSC, revealing the molecular machinery underlying stemness properties. Both stem cell programs were highly significant independent predictors of patient survival and also found in existing prognostic signatures. Thus, determinants of stemness influence clinical outcome of AML establishing that LSC are clinically relevant and not mere artifacts of xenotransplantation.

Publication Title

Stem cell gene expression programs influence clinical outcome in human leukemia.

Sample Metadata Fields

Specimen part

View Samples
accession-icon GSE62759
Antiviral Protection via RdRP-Mediated Stable Activation of Innate Immunity
  • organism-icon Mus musculus, Homo sapiens
  • sample-icon 24 Downloadable Samples
  • Technology Badge Icon Affymetrix Human Genome U133 Plus 2.0 Array (hgu133plus2)

Description

This SuperSeries is composed of the SubSeries listed below.

Publication Title

Antiviral Protection via RdRP-Mediated Stable Activation of Innate Immunity.

Sample Metadata Fields

Sex, Specimen part

View Samples
accession-icon GSE62756
Differential gene expression in spinal cords from WT and transgenic RdRP mice during uninfected (baseline) conditions
  • organism-icon Mus musculus
  • sample-icon 6 Downloadable Samples
  • Technology Badge Icon Affymetrix Human Genome U133 Plus 2.0 Array (hgu133plus2)

Description

Previously, we reported that mice made transgenic for a picornaviral RdRP the 3Dpol protein of Theilers murine encephalomyelitis virus (TMEV) suppress infection by diverse viral families. How the picornaviral RdRP transgene exerted antiviral protection in vivo was not known. To investigate the molecular mechanism, we determined gene expression profiles in spinal cords of WT and RdRP transgenic mice prior to (baseline) and after (2 days) infection with Encephalomyocarditis Virus (EMCV).

Publication Title

Antiviral Protection via RdRP-Mediated Stable Activation of Innate Immunity.

Sample Metadata Fields

Sex

View Samples
accession-icon GSE62755
Differential gene expression in human THP-1 monocytes expressing the RdRPrna mutant transgene compared to THP-1 empty vector control cells
  • organism-icon Homo sapiens
  • sample-icon 4 Downloadable Samples
  • Technology Badge Icon Affymetrix Human Genome U133 Plus 2.0 Array (hgu133plus2)

Description

Previously, we reported that mice made transgenic for a picornaviral RdRP the 3Dpol protein of Theilers murine encephalomyelitis virus (TMEV) suppress infection by diverse viruses. Using mouse genetic studies, we determined that uninfected RdRP transgenic mice inherently induce an arsenel of prominent antiviral effectors and that this phenotype is MDA5-, MAVS- and IFNR-dependent. To determine the mechanism underlying MDA5 activation and induction of constitutive antiviral signaling by the picornaviral RdRP, we constructed mutant RdRP transgenes. First, we introduced pervasive, coding-neutral point mutations into the RdRP cDNA to maximally disrupt primary and secondary RNA structure (RdRPrna). Another mutant, RdRPcat, lacks catalytic activity due to alanine substitution of the key catalytic center triad aspartate residues (D233, D328, and D329), but is otherwise intact at the nucleotide and amino acid levels. The WT, RdRPrna, and RdRPcat versions of the RdRP transgenes were transduced with lentiviral vectors into human THP-1 monocytes, with RdRP mRNA transcription controlled by the Spleen Focus Forming Virus (SFFV) promoter. In parallel a control cell line transduced with a vector lacking any RdRP transgene (null THP-1) was generated.

Publication Title

Antiviral Protection via RdRP-Mediated Stable Activation of Innate Immunity.

Sample Metadata Fields

Specimen part

View Samples
accession-icon GSE62753
Differential gene expression in human THP-1 monocytes expressing the RdRP transgene (WT version) compared to THP-1 empty vector control cells
  • organism-icon Homo sapiens
  • sample-icon 3 Downloadable Samples
  • Technology Badge Icon Affymetrix Human Genome U133 Plus 2.0 Array (hgu133plus2)

Description

Previously, we reported that mice made transgenic for a picornaviral RdRP the 3Dpol protein of Theilers murine encephalomyelitis virus (TMEV) suppress infection by diverse viruses. Using mouse genetic studies, we determined that uninfected RdRP transgenic mice inherently induce an arsenel of prominent antiviral effectors and that this phenotype is MDA5-, MAVS- and IFNR-dependent. To determine the mechanism underlying MDA5 activation and induction of constitutive antiviral signaling by the picornaviral RdRP, we constructed mutant RdRP transgenes. First, we introduced pervasive, coding-neutral point mutations into the RdRP cDNA to maximally disrupt primary and secondary RNA structure (RdRPrna). Another mutant, RdRPcat, lacks catalytic activity due to alanine substitution of the key catalytic center triad aspartate residues (D233, D328, and D329), but is otherwise intact at the nucleotide and amino acid levels. The WT, RdRPrna, and RdRPcat versions of the RdRP transgenes were transduced with lentiviral vectors into human THP-1 monocytes, with RdRP mRNA transcription controlled by the Spleen Focus Forming Virus (SFFV) promoter. In parallel a control cell line transduced with a vector lacking any RdRP transgene (null THP-1) was generated.

Publication Title

Antiviral Protection via RdRP-Mediated Stable Activation of Innate Immunity.

Sample Metadata Fields

Specimen part

View Samples
accession-icon GSE62754
Differential gene expression in human THP-1 monocytes expressing the RdRPcat mutant transgene compared to THP-1 empty vector control cells
  • organism-icon Homo sapiens
  • sample-icon 4 Downloadable Samples
  • Technology Badge Icon Affymetrix Human Genome U133 Plus 2.0 Array (hgu133plus2)

Description

Previously, we reported that mice made transgenic for a picornaviral RdRP the 3Dpol protein of Theilers murine encephalomyelitis virus (TMEV) suppress infection by diverse viruses. Using mouse genetic studies, we determined that uninfected RdRP transgenic mice inherently induce an arsenel of prominent antiviral effectors and that this phenotype is MDA5-, MAVS- and IFNR-dependent. To determine the mechanism underlying MDA5 activation and induction of constitutive antiviral signaling by the picornaviral RdRP, we constructed mutant RdRP transgenes. First, we introduced pervasive, coding-neutral point mutations into the RdRP cDNA to maximally disrupt primary and secondary RNA structure (RdRPrna). Another mutant, RdRPcat, lacks catalytic activity due to alanine substitution of the key catalytic center triad aspartate residues (D233, D328, and D329), but is otherwise intact at the nucleotide and amino acid levels. The WT, RdRPrna, and RdRPcat versions of the RdRP transgenes were transduced with lentiviral vectors into human THP-1 monocytes, with RdRP mRNA transcription controlled by the Spleen Focus Forming Virus (SFFV) promoter. In parallel a control cell line transduced with a vector lacking any RdRP transgene (null THP-1) was generated.

Publication Title

Antiviral Protection via RdRP-Mediated Stable Activation of Innate Immunity.

Sample Metadata Fields

Specimen part

View Samples
accession-icon GSE62758
Differential gene expression in spinal cords from WT mice during uninfected (baseline) conditions and after (2 days post) infection with Encephalomyocarditis Virus (EMCV)
  • organism-icon Mus musculus
  • sample-icon 4 Downloadable Samples
  • Technology Badge Icon Affymetrix Human Genome U133 Plus 2.0 Array (hgu133plus2)

Description

Previously, we reported that mice made transgenic for a picornaviral RdRP the 3Dpol protein of Theilers murine encephalomyelitis virus (TMEV) suppress infection by diverse viral families. How the picornaviral RdRP transgene exerted antiviral protection in vivo was not known. To investigate the molecular mechanism, we determined gene expression profiles in spinal cords of WT and RdRP transgenic mice prior to (baseline) and after (2 days) infection with Encephalomyocarditis Virus (EMCV).

Publication Title

Antiviral Protection via RdRP-Mediated Stable Activation of Innate Immunity.

Sample Metadata Fields

Sex

View Samples
accession-icon GSE62757
Differential gene expression in spinal cords from uninfected WT mice and infected RdRP transgenic mice (2 days post infection with Encephalomyocarditis Virus, EMCV)
  • organism-icon Mus musculus
  • sample-icon 3 Downloadable Samples
  • Technology Badge Icon Affymetrix Human Genome U133 Plus 2.0 Array (hgu133plus2)

Description

Previously, we reported that mice made transgenic for a picornaviral RdRP the 3Dpol protein of Theilers murine encephalomyelitis virus (TMEV) suppress infection by diverse viral families. How the picornaviral RdRP transgene exerted antiviral protection in vivo was not known. To investigate the molecular mechanism, we determined gene expression profiles in spinal cords of WT and RdRP transgenic mice prior to (baseline) and after (2 days) infection with Encephalomyocarditis Virus (EMCV).

Publication Title

Antiviral Protection via RdRP-Mediated Stable Activation of Innate Immunity.

Sample Metadata Fields

Sex

View Samples

refine.bio is a repository of uniformly processed and normalized, ready-to-use transcriptome data from publicly available sources. refine.bio is a project of the Childhood Cancer Data Lab (CCDL)

fund-icon Fund the CCDL

Developed by the Childhood Cancer Data Lab

Powered by Alex's Lemonade Stand Foundation

Cite refine.bio

Casey S. Greene, Dongbo Hu, Richard W. W. Jones, Stephanie Liu, David S. Mejia, Rob Patro, Stephen R. Piccolo, Ariel Rodriguez Romero, Hirak Sarkar, Candace L. Savonen, Jaclyn N. Taroni, William E. Vauclain, Deepashree Venkatesh Prasad, Kurt G. Wheeler. refine.bio: a resource of uniformly processed publicly available gene expression datasets.
URL: https://www.refine.bio

Note that the contributor list is in alphabetical order as we prepare a manuscript for submission.

BSD 3-Clause LicensePrivacyTerms of UseContact