To investigate the response of Arabidopsis thaliana plants to non-freezing, cool temperatures, we subjected four week old plants to various chilling temperatures at defined times during the diurnal cycle to control for diurnal effects on transcription. From the same plants, metabolites and enzyme activities were measured as well. Interestingly a gradual change could be observed over a wide range of temperatures. Some of which could be attributed to the CBF program.
Multilevel genomic analysis of the response of transcripts, enzyme activities and metabolites in Arabidopsis rosettes to a progressive decrease of temperature in the non-freezing range.
Specimen part
View SamplesALTERED MERISTEM PROGRAM1 (AMP1) is a member of the M28 family of carboxypeptidases with a pivotal role in cell fate maintenance in the embryo and shoot meristem. A defect in AMP1 function results in suspensor to embryo conversion and a hypertrophic shoot meristem forming ectopic stem cell pools. However, so far the role of AMP1 in shoot development could not be assigned to a specific molecular pathway nor is its biochemical function resolved. Double mutants in CYP78A5 and CYP78A7 develop a similar set of cell fate defects. To further assess whether this phenotypic overlap is also depicted in a congruency at the global gene expression level, we analyzed the transcriptomic responses of both genotypes
AMP1 and CYP78A5/7 act through a common pathway to govern cell fate maintenance in Arabidopsis thaliana.
Age, Specimen part
View SamplesThis SuperSeries is composed of the SubSeries listed below.
The Small Molecule Hyperphyllin Enhances Leaf Formation Rate and Mimics Shoot Meristem Integrity Defects Associated with AMP1 Deficiency.
Specimen part, Treatment
View SamplesALTERED MERISTEM PROGRAM1 (AMP1) is a member of the M28 family of carboxypeptidases with a pivotal role in plant development and stress adaptation. Its most prominent mutant defect is a unique hypertrophic shoot phenotype combining a strongly increased organ formation rate with enhanced meristem size and the formation of ectopic meristem poles. However, so far the role of AMP1 in shoot development could not be assigned to a specific molecular pathway nor is its biochemical function resolved. We used a chemical genetic approach to identify the drug hyperphyllin (HP), which specifically mimics the shoot defects of amp1, including plastochron reduction and enlargement and multiplication of the shoot meristem. To further assess whether hyperphyllin acts in an AMP1-dependent manner we compared the transcriptonal responses of hyperphyllin-treated wild-type and amp1 mutant seedlings.
The Small Molecule Hyperphyllin Enhances Leaf Formation Rate and Mimics Shoot Meristem Integrity Defects Associated with AMP1 Deficiency.
Specimen part, Treatment
View SamplesALTERED MERISTEM PROGRAM1 (AMP1) is a member of the M28 family of carboxypeptidases with a pivotal role in plant development and stress adaptation. Its most prominent mutant defect is a unique hypertrophic shoot phenotype combining a strongly increased organ formation rate with enhanced meristem size and the formation of ectopic meristem poles. However, so far the role of AMP1 in shoot development could not be assigned to a specific molecular pathway nor is its biochemical function resolved. We used a chemical genetic approach to identify the drug hyperphyllin (HP), which specifically mimics the shoot defects of amp1, including plastochron reduction and enlargement and multiplication of the shoot meristem. To further assess whether hyperphyllin acts in an AMP1-dependent manner we compared the transcriptonal responses of hyperphyllin-treated wild-type Arabidopsis seedlings with those of untreated amp1 mutant seedlings.
The Small Molecule Hyperphyllin Enhances Leaf Formation Rate and Mimics Shoot Meristem Integrity Defects Associated with AMP1 Deficiency.
Specimen part, Treatment
View SamplesIn order to investigate the patterns of genetic lesions in a panel of 23 Human Multiple Myeloma Cell Lines (HMCLs), we made a genomic integrative analysis involving FISH and both gene expression and genome-wide profiling approaches. The expression profiles of the genes targeted by the main IGH translocations showed that the WHSC1/MMSET gene involved in t(4;14)(p16;q32) was expressed at different levels in all of the HMCLs, and that the expression of the MAF gene was not restricted to the HMCLs carrying t(14;16)(q32;q23). Supervised analyses identified a limited number of genes specifically associated with t(4;14) and involved in different biological processes. The signature related to MAF/MAFB expression included the known MAF target genes CCND2 and ITGB7, as well as genes controlling cell shape and cell adhesion. Genomewide DNA profiling allowed the identification of a gain on chromosome arm 1q in 88% of the analyzed cell lines, together with recurrent gains on 8q, 18q, 7q and 20q; the most frequent deletions affected 1p, 13q, 17p and 14q; and almost all of the cell lines presented LOH on chromosome 13. Two hundred and twenty-two genes were found to be simultaneously overexpressed and amplified in our panel, including the BCL2 locus at 18q21.33. Our data further support the evidence of the genomic complexity of multiple myeloma and reinforce the role of an integrated genomic approach in improving our understanding of the molecular pathogenesis of the disease.
Molecular characterization of human multiple myeloma cell lines by integrative genomics: insights into the biology of the disease.
No sample metadata fields
View SamplesHypoxia is an important condition in the tumor cell microenvironment and approximately 1-1.5% of the genome is transcriptionally responsive to hypoxia with hypoxia-inducible factor-1 (HIF-1) as a major mediator of transcriptional activation. Tumor hypoxia is associated with a more aggressive phenotype of many cancers in adults, but data on pediatric tumors are scarce. By immunohistochemical analysis, HIF-1 expression was readily detectable in 18/28 primary Ewings sarcoma family tumors (ESFT), a group of highly malignant bone-associated tumors in children and young adults, which encouraged us to study the effect of hypoxia on ESFT cell lines in vitro.
Hypoxia modulates EWS-FLI1 transcriptional signature and enhances the malignant properties of Ewing's sarcoma cells in vitro.
Disease, Cell line
View SamplesPurpose: Probe the transcriptome-wide changes in the expression pattern between WT and Sertoli-specific Upf2 KO testes Methods: Total RNA were extracted from WT and Sertoli-specific Upf2 KO testes in triplicates and subject to deep-sequencing in Ion Torrent seq platform. Results: Using an optimized data analysis workflow, we mapped about 30 million sequence reads per sample to the mouse genome (build mm9) and identified 16,014 transcripts in the retinas of WT and Nrl-/- mice with BWA workflow and 34,115 transcripts with TopHat workflow. RNA-seq data confirmed stable expression of 25 known housekeeping genes, and 12 of these were validated with qRT–PCR. RNA-seq data had a linear relationship with qRT–PCR for more than four orders of magnitude and a goodness of fit (R2) of 0.8798. Approximately 10% of the transcripts showed differential expression between the WT and Nrl-/- retina, with a fold change =1.5 and p value <0.05. Altered expression of 25 genes was confirmed with qRT–PCR, demonstrating the high degree of sensitivity of the RNA-seq method. Hierarchical clustering of differentially expressed genes uncovered several as yet uncharacterized genes that may contribute to retinal function. Data analysis with BWA and TopHat workflows revealed a significant overlap yet provided complementary insights in transcriptome profiling. Conclusions: Our study represents the first detailed analysis of Upf2-mediated NMD pathway in Sertoli cell development Overall design: Testis mRNA profiling was generated from postnatal day 4 WT and Amh-cKO (Sertoli specific Upf2 KO) testes, in triplicates.
UPF2, a nonsense-mediated mRNA decay factor, is required for prepubertal Sertoli cell development and male fertility by ensuring fidelity of the transcriptome.
No sample metadata fields
View SamplesIn this study, we use pre-malignant cells from different Cebpa mutant acute myeloid leukemia (AML) models. We have used conditional KO models (CreLoxP) and isolated hematopoietic cells shortly after induction of recombination, in order to look at pre-leukemic cells, which have acquired the first hit, but not yet undergone full malignant transformation.
Lack of the p42 form of C/EBPα leads to spontaneous immortalization and lineage infidelity of committed myeloid progenitors.
Sex, Specimen part
View SamplesThis report not only adds a novel mechanism to the current dogma on achieving global shortening of 3''UTRs, but also unveils a novel function of the NMD pathway in establishing tissue-specific transcriptome identity Overall design: We first generated prospermatogonia-specific Upf2 conditional knockout mice (Ddx4-Cre; Upf2 fl/?, hereafter called Ddx4-KO) by crossing Ddx4-Cre13 with Upf2 floxed.
UPF2-Dependent Nonsense-Mediated mRNA Decay Pathway Is Essential for Spermatogenesis by Selectively Eliminating Longer 3'UTR Transcripts.
No sample metadata fields
View Samples