MSC-adherent hematopoietic stem and progenotir cells (HSPC) express adhesion-associated genes at higher levels than non-adherent cells while cell-cycle and differentiation-associated genes are not significantly changed between the two cell populations.
Cytohesin 1 regulates homing and engraftment of human hematopoietic stem and progenitor cells.
Specimen part
View SamplesBackground: The FACEBASE consortium was established in part to create a central resource for craniofacial researchers. One purpose is to provide a molecular anatomy of craniofacial development. To this end we have used a combination of laser capture microdissection and RNA-Seq to define the gene expression programs driving development of the murine palate. Results: We focused on the E14.5 palate, soon after medial fusion of the two palatal shelves. The palate was divided into multiple compartments, including medial and lateral, as well as oral and nasal, for both the anterior and posterior domains. A total of 25 RNA-Seq datasets were generated. The results provide a comprehensive view of the region specific expression of all transcription factors, growth factors and receptors. Paracrine interactions can be inferred from flanking compartment growth factor/receptor expression patterns. The results are validated primarily through very high concordance with extensive previously published gene expression data for the developing palate. In addition selected immunostain validations were carried out. Conclusions: This report provides an RNA-Seq based atlas of gene expression patterns driving palate development at microanatomic resolution. This FACEBASE resource is designed to fuel discovery by the craniofacial research community. Overall design: Laser capture microdissection and RNA-seq were used to generate gene expression profiles of different compartments of the mouse E14.5 developing palate
Molecular Anatomy of Palate Development.
No sample metadata fields
View SamplesSingle cell RNA-seq is a powerful methodology, but with important limitations. In particular, the process of enzymatic separation of cells at 37O C can be expected to result in artifact changes in gene expression patterns. We here describe a dissociation method that uses protease from a psychrophilic microorganism with high activity in the cold. The entire procedure is carried out at 6O C or colder, where mammalian transcriptional machinery is largely inactive. To test this method we carry out single cell RNA-seq on about 9,000 cells, comparing the results of the cold method with a method using 37O C incubations for multiple times. We show that the cold active protease method results in a great reduction in gene expression artifacts. Overall design: Whole mouse post natal day 1 kidney cells were dissassociated by either a cold active protease or an enzyme cocktail for varying lengths of time. The gene expression profiles of the four groups of cells were determined by drop-seq / RNA-seq.
Psychrophilic proteases dramatically reduce single-cell RNA-seq artifacts: a molecular atlas of kidney development.
Subject
View SamplesWe characterize the gene expression changes which occur in the mouse glomerular podocyte, mesangial, and endothelial cells between control mice and mutant mice which are missing two copies of Fyn-proto oncogene (Fyn) and one copy of CD2-associated protein (CD2AP) in a mouse model of FSGS. Overall design: The glomeruli are purified by digestion with Collagenase A and sieving, a single cell suspension is generated via enzymatic dissociation; the single cell suspension is then FACS sorted based on GFP-fluorescence (targeting the glomerular endothelial, mesangial, and podocyte cells). Total RNA was purified using a column-based system. RNA was then quantitatively and qualitatively analyzed using an agilent bioanalynzer, cDNA libraries were generated using Nugen Ovation RNA-Seq V2, and the resulting libraries were ran on an Illumina HiSeq 2500. Data was analyzed using Strand NGS version 2.6.
A bigenic mouse model of FSGS reveals perturbed pathways in podocytes, mesangial cells and endothelial cells.
Specimen part, Subject
View SamplesStrains devoid of ppGpp (relA spoT; called ppGpp0), and ppGpp0 dksA- exhibit several amino acid requirements for growth on minimal media. We found that overexpression of DksA can complement some of those requirements. Since DksA is a factor that binds to the RNA polymerase secondary channel, we wondered if other secondary channel proteins might also exert a similar role with respect to growth on minimal media. In our study we found that GreA and partially GreB can in fact complement these requirements under certain conditions. Here, we wished to investigate a broader effect of GreA and GreB on ppGpp0 and ppGpp0 dksA- strains. Since the parent strains are unable to grow in minimal media, we had to supplement the M9 glucose medium with a set of amino acids (DFHILQSTV). We found that both, GreA and GreB can affect a much larger set of genes in the absence of dksA, than in its presence. Also, GreA seems to affect more genes than GreB, under both conditions.
Effects on growth by changes of the balance between GreA, GreB, and DksA suggest mutual competition and functional redundancy in Escherichia coli.
No sample metadata fields
View SamplesThis SuperSeries is composed of the SubSeries listed below.
Imprecise transcription termination within Escherichia coli greA leader gives rise to an array of short transcripts, GraL.
No sample metadata fields
View SamplesWhile studying greA expression, we noted presence of an intrinsic terminator in the leader region of greA mRNA transcript. We found this terminator to be quite efficient both in vivo and in vitro. This region seems to be conserved among many enteric bacteria. Judging from fitness experiments, the resulting short RNAs (50-59nt long) exert biological effects. This lead us to propose that greA leader region encodes a novel small non-coding RNA that we collectively call GraL.
Imprecise transcription termination within Escherichia coli greA leader gives rise to an array of short transcripts, GraL.
No sample metadata fields
View SamplesWhile studying greA expression, we noted presence of an intrinsic terminator in the leader region of greA mRNA transcript. We found this terminator to be quite efficient both in vivo and in vitro. This region seems to be conserved among many enteric bacteria. Judging from fitness experiments, the resulting short RNAs (50-59nt long) exert biological effects. This lead us to propose that greA leader region encodes a novel small non-coding RNA that we collectively call GraL.
Imprecise transcription termination within Escherichia coli greA leader gives rise to an array of short transcripts, GraL.
No sample metadata fields
View SamplesThis SuperSeries is composed of the SubSeries listed below.
A gene expression atlas of early craniofacial development.
Specimen part
View SamplesWe present a gene expression atlas of early mouse craniofacial development. Laser capture microdissection (LCM) was used to isolate cells from the principal critical micro-regions, whose development, differentiation and signaling interactions are responsible for the construction of the mammalian face.
A gene expression atlas of early craniofacial development.
Specimen part
View Samples