Aneuploidy, an incorrect chromosome number, is the leading cause of miscarriages and mental retardation in humans and is a hallmark of cancer. We examined the effects of aneuploidy on primary mouse cells by generating a series of cell lines that carry an extra copy of one of four mouse chromosomes. In all four trisomic lines proliferation was impaired and metabolic properties were altered. Immortalization, the acquisition of the ability to proliferate indefinitely, was also affected by the presence of an additional chromosome, with some chromosomes inhibiting immortalization while others accelerating the process. Our data indicate that aneuploidy decreases not only organismal but also cellular fitness and elicits traits that are shared between different aneuploid cells.
Aneuploidy affects proliferation and spontaneous immortalization in mammalian cells.
No sample metadata fields
View Samplesanalyzed changes in cytokine/chemokine production and gene expression levels in, human peripheral blood mononuclear cells upon teratment with 15M,2,4-benzenetriol
Identification of human cell responses to benzene and benzene metabolites.
No sample metadata fields
View SamplesCD4+ cells from Foxp3.eGFP mice containing Foxp3- Teff and Foxp3+ Treg cells were treated with anti-CD3/CD28 monoclonal antibodies or soluble OX40L and JAG1 for 3 days to induce TCR-dependent vs TCR-independent Treg proliferation. Untreated fresh CD4+ T-cells used as control. Post treatment T-cell proliferation was confirmed by Cell Trace violet dilution and Foxp3+ (Treg) and Foxp3-(Teff) were sorted. Differential gene expression profiling between Tregs and Teff cells among control, anti-CD3/CD28 and OX40L-JAG1 treated cultured was performed using affymetrix mouse gene 2.0 ST micro array.
OX40L-JAG1-Induced Expansion of Lineage-Stable Regulatory T Cells Involves Noncanonical NF-κB Signaling.
Specimen part, Treatment
View SamplesHsp90 is critical for regulation of the phenotype and functional activity of human T lymphocytes and natural killer (NK) cells.
Heat shock protein 90 is critical for regulation of phenotype and functional activity of human T lymphocytes and NK cells.
Specimen part, Treatment
View SamplesThis SuperSeries is composed of the SubSeries listed below.
In vivo genome-wide analysis of multiple tissues identifies gene regulatory networks, novel functions and downstream regulatory genes for Bapx1 and its co-regulation with Sox9 in the mammalian vertebral column.
Specimen part
View SamplesAbstract
Gene expression patterns define key transcriptional events in cell-cycle regulation by cAMP and protein kinase A.
No sample metadata fields
View SamplesThis study aims to look at gene expresion profiles between wildtype and Sox9 knockout cells of the vertebral column in a E12.5 mouse embryo. Instead of looking at the whole vertebral column, only cells expressing Sox9 were sorted by Fluroscent Activated Cell Sorting (FACS) and subjected to expression profiling by microarray.
In vivo genome-wide analysis of multiple tissues identifies gene regulatory networks, novel functions and downstream regulatory genes for Bapx1 and its co-regulation with Sox9 in the mammalian vertebral column.
Specimen part
View SamplesThis study aims to look at gene expresion profiles between wildtype and Bapx1 knockout cells of the hindlimbs in a E12.5 mouse embryo. Instead of looking at the whole hindlimbs,only cells expressing Bapx1 were sorted by Fluroscent Activated Cell Sorting (FACS) and subjected to expression profiling by microarray.
In vivo genome-wide analysis of multiple tissues identifies gene regulatory networks, novel functions and downstream regulatory genes for Bapx1 and its co-regulation with Sox9 in the mammalian vertebral column.
Specimen part
View SamplesThis study aims to look at gene expresion profiles between wildtype and Bapx1 knockout cells of the vertebral column in a E12.5 mouse embryo. Instead of looking at the whole vertebral column ,only cells expressing Bapx1 were sorted by Fluroscent Activated Cell Sorting (FACS) and subjected to expression profiling by microarray.
In vivo genome-wide analysis of multiple tissues identifies gene regulatory networks, novel functions and downstream regulatory genes for Bapx1 and its co-regulation with Sox9 in the mammalian vertebral column.
Specimen part
View SamplesThis study aims to look at gene expresion profiles between wildtype and Bapx1 knockout cells of the spleen in a E12.5 mouse embryo. Instead of looking at the whole spleen,only cells expressing Bapx1 were sorted by Fluroscent Activated Cell Sorting (FACS) and subjected to expression profiling by microarray.
In vivo genome-wide analysis of multiple tissues identifies gene regulatory networks, novel functions and downstream regulatory genes for Bapx1 and its co-regulation with Sox9 in the mammalian vertebral column.
Specimen part
View Samples