refine.bio
  • Search
      • Normalized Compendia
      • RNA-seq Sample Compendia
  • Docs
  • About
  • My Dataset
github link
Showing
of 322 results
Sort by

Filters

Technology

Platform

accession-icon GSE42346
Expression data from murine bone marrow erythroid progenitor cells at two early stages of development.
  • organism-icon Mus musculus
  • sample-icon 14 Downloadable Samples
  • Technology Badge Icon Affymetrix Mouse Genome 430 2.0 Array (mouse4302)

Description

This study was designed to define erythropoietin (EPO) regulated genes in murine bone marrow erythroid progenitor cells at two stages of development, designated E1, and E2. E1 cells correspond to CFUe- like progenitors, while E2 cells are proerythroblasts.

Publication Title

Defining an EPOR- regulated transcriptome for primary progenitors, including Tnfr-sf13c as a novel mediator of EPO- dependent erythroblast formation.

Sample Metadata Fields

Sex, Specimen part, Treatment

View Samples
accession-icon GSE40643
Expression analysis on microfibrillar associated protein 5 (MFAP5) protein treated ovarian cancer cell line OVCA432
  • organism-icon Homo sapiens
  • sample-icon 5 Downloadable Samples
  • Technology Badge Icon Affymetrix Human Genome U133 Plus 2.0 Array (hgu133plus2)

Description

Ovarian cancer is the fifth most common form of cancer in women in the United States. Among different types of ovarian cancer, epithelial ovarian cancer is the most common and is highly lethal, however, prognostic and predictive markers, which can be used to predict chemoresponse and patient survival, have not been thoroughly explored. One critically important yet often overlooked component to the tumor progression process is the tumor microenvironment. Primarily composed of fibroblasts and extracellular matrix proteins (ECM) as well as endothelial cells and lymphocytic infiltrate, the tumor microenvironment has been shown to directly affect cell growth, migration, and differentiation through secreted proteins, cell-cell interactions and matrix remodeling (Tlsty and Coussens, 2006). The tumor microenvironment has the potential to promote tumor initiation of normal epithelial cells and facilitate progression of malignant cells, thereby, presenting a unique approach to diagnosing, understanding and treating cancer. Using a whole-genome oligonucleotide array platform to perform transcriptome profiling on the fibroblastic stromal component microdissected from a series of advanced stage high-grade serous ovarian adenocarcinomas, we identified a transcriptome signature for the ovarian cancer associated fibroblast (CAF). We further functionally characterized one of the identified genes, MFAP5, and we showed that stromal MFAP5 is a prognostic marker associated with poor patient survival. In addition to that, to investigate the signaling machanism and the effect of MFAP5 treatment on ovarian cancer cells, transcriptome profiling of MFAP5 treated OVCA432 high-grade serous ovarian cancer cells was performed. Further functional studies showed that stromal MFAP5 modulated ovarian cancer cell motility and invasion potential.

Publication Title

Calcium-dependent FAK/CREB/TNNC1 signalling mediates the effect of stromal MFAP5 on ovarian cancer metastatic potential.

Sample Metadata Fields

Cell line

View Samples
accession-icon GSE18938
Effect of EGF and/or HER2 on the growth of MCF10A cells on extracellular matrix: time course
  • organism-icon Homo sapiens
  • sample-icon 20 Downloadable Samples
  • Technology Badge Icon Affymetrix Human Gene 1.0 ST Array (hugene10st)

Description

Mammary epithelial cells MCF10A and HER2 overexpressing MCF10A cells were grown on matrigel in the absence or presence of epidermal growth factor. Cells were lysed and RNA was collected at 1.5,3,5,7,9 days.

Publication Title

Modeling ductal carcinoma in situ: a HER2-Notch3 collaboration enables luminal filling.

Sample Metadata Fields

Cell line, Treatment

View Samples
accession-icon GSE14395
Gender-specific gene repression of PPAR-alpha KO mice in liver and heart
  • organism-icon Mus musculus
  • sample-icon 24 Downloadable Samples
  • Technology Badge Icon Affymetrix Mouse Genome 430 2.0 Array (mouse4302)

Description

Most metabolic studies are conducted in male animals; thus, the molecular mechanism controlling gender-specific pathways has been neglected, including sex-dependent responses to peroxisome proliferator-activated receptors (PPARs). Here we show that PPARalpha has broad female-dependent repressive actions on hepatic genes involved in steroid metabolism and inflammation. In males, this effect is reproduced by the administration of synthetic PPARalpha ligand. Using the steroid hydroxylase gene Cyp7b1 as a model, we elucidated the molecular mechanism of this PPARalpha-dependent repression. Initial sumoylation of the ligand-binding domain of PPARalpha triggers the interaction of PPARalpha with the GA-binding protein alpha bound to the target promoter. Histone deacetylase is then recruited, and histones and adjacent Sp1-binding site are methylated. These events result in the loss of Sp1-stimulated expression, and thus the down-regulation of Cyp7b1. Physiologically, this repression confers protection against estrogen-induced intrahepatic cholestasis, paving the way for a novel therapy against the most common hepatic disease during pregnancy.

Publication Title

Sumoylated PPARalpha mediates sex-specific gene repression and protects the liver from estrogen-induced toxicity in mice.

Sample Metadata Fields

No sample metadata fields

View Samples
accession-icon GSE39413
Regulation of gene expressions in vivo by anti-VEGF and anti-Notch therapy [Mouse430_2]
  • organism-icon Homo sapiens
  • sample-icon 14 Downloadable Samples
  • Technology Badge Icon Affymetrix Mouse Genome 430 2.0 Array (mouse4302)

Description

U87-EV human glioblastoma xenograft tumours is therapeutically treated by bevacizumab, a humanized anti-human VEGF mAb, or dibenzazepine (DBZ) when tumour is established in BALB/c SCID mice. At the end point, collect tumour samples and extracted total RNA for microarray to investigate the gene profile changes compared to control. These include the genes from human tumour cells and mouse host stroma cells.

Publication Title

A core human primary tumor angiogenesis signature identifies the endothelial orphan receptor ELTD1 as a key regulator of angiogenesis.

Sample Metadata Fields

Specimen part

View Samples
accession-icon GSE39223
Regulation of gene expressions in vivo by anti-VEGF and anti-Notch therapy [HG-U133_Plus_2]
  • organism-icon Homo sapiens
  • sample-icon 8 Downloadable Samples
  • Technology Badge Icon Affymetrix Human Genome U133 Plus 2.0 Array (hgu133plus2)

Description

U87-EV human glioblastoma xenograft tumours is therapeutically treated by bevacizumab, a humanized anti-human VEGF mAb, or dibenzazepine (DBZ), when tumour is established in BALB/c SCID mice. At the end point, collect tumour samples and extracted total RNA for microarray to investigate the gene profile changes compared to control. These include the genes from human tumour cells and mouse host stroma cells.

Publication Title

A core human primary tumor angiogenesis signature identifies the endothelial orphan receptor ELTD1 as a key regulator of angiogenesis.

Sample Metadata Fields

Specimen part

View Samples
accession-icon GSE37956
Regulation of gene expressions in vivo by anti-VEGF therapy
  • organism-icon Homo sapiens
  • sample-icon 6 Downloadable Samples
  • Technology Badge Icon Affymetrix Human Genome U133 Plus 2.0 Array (hgu133plus2)

Description

U87-EV human glioblastoma xenograft tumours is therapeutically treated by bevacizumab, a humanized anti-human VEGF mAb, when tumour is established in BALB/c SCID mice. At the end point, collect tumour samples and extracted total RNA for microarray to investigate the gene profile changes compared to control. These include the genes from human tumour cells and mouse host stroma cells.

Publication Title

A core human primary tumor angiogenesis signature identifies the endothelial orphan receptor ELTD1 as a key regulator of angiogenesis.

Sample Metadata Fields

Cell line

View Samples
accession-icon GSE16333
Phytochrome Interacting Factors 4 and 5 redundantly limit seedling de-etiolation in continuous far-red light.
  • organism-icon Arabidopsis thaliana
  • sample-icon 18 Downloadable Samples
  • Technology Badge Icon Affymetrix Arabidopsis ATH1 Genome Array (ath1121501)

Description

Phytochromes are red/far red photosensors regulating numerous developmental programs in plants. Among them phytochrome A (phyA) is essential to enable seedling de-etiolation in continuous far-red (FR) light a condition mimicking the environment under a dense canopy. The ecological relevance of this response is demonstrated by the high mortality rate of phyA mutants germinating in deep vegetational shade. phyA signaling involves a direct interaction of the photoreceptor with members of the bHLH transcription factor family, PIF1 and PIF3 (Phytochrome Interacting Factor). Here we investigated the involvement of PIF4 and PIF5 in phyA signaling and found that they redundantly control de-etiolation in FR light. The pif4pif5 double mutant is hypersensitive to low fluence rates of FR light. This phenotype is dependent on FR light perception by phyA but does not rely on alterations of the phyA level. Our microarrays analysis shows that PIF4 and PIF5 are part of an inhibitory mechanism repressing the expression of some light-responsive genes in the dark and are also needed for full expression of several growth-related genes in the light. Unlike PIF1 and PIF3, PIF4 and PIF5 are not degraded in response to FR light indicating that they are light-regulated by a different mechanism. Our genetic analysis suggests that this is achieved through the sequestration of these PIFs by the closely related bHLH transcription factor HFR1 (long Hypocotyl in FR light).

Publication Title

Phytochrome interacting factors 4 and 5 redundantly limit seedling de-etiolation in continuous far-red light.

Sample Metadata Fields

No sample metadata fields

View Samples
accession-icon GSE63290
Temporal analysis of RNA turnover in Interferon Gamma treated bone marrow-derived macrophages
  • organism-icon Mus musculus
  • sample-icon 47 Downloadable Samples
  • Technology Badge Icon Affymetrix Mouse Gene 1.0 ST Array (mogene10st)

Description

Interferon gamma treatment of macrophages results in hundreds if not thousands of alterations in gene expression and an antiviral state being established in these cells. Little is known about relationship between transcript synthesis, abundance and decay in macrophages during the first hours after interferon gamma treatment and how these factors influence the antiviral cellular phenotype.

Publication Title

An Interferon Regulated MicroRNA Provides Broad Cell-Intrinsic Antiviral Immunity through Multihit Host-Directed Targeting of the Sterol Pathway.

Sample Metadata Fields

Age, Specimen part

View Samples
accession-icon GSE66717
Hepatocyte-specific knockout of Pten and of Pten and Tgfbr2 in mice
  • organism-icon Mus musculus
  • sample-icon 11 Downloadable Samples
  • Technology Badge Icon Affymetrix Mouse Gene 1.0 ST Array (mogene10st)

Description

Gene expression of hepatocyt-specific knockout of Pten and of Pten and Tgfbr2 in mice

Publication Title

Epithelial Transforming Growth Factor-β Signaling Does Not Contribute to Liver Fibrosis but Protects Mice From Cholangiocarcinoma.

Sample Metadata Fields

Sex, Specimen part

View Samples
...

refine.bio is a repository of uniformly processed and normalized, ready-to-use transcriptome data from publicly available sources. refine.bio is a project of the Childhood Cancer Data Lab (CCDL)

fund-icon Fund the CCDL

Developed by the Childhood Cancer Data Lab

Powered by Alex's Lemonade Stand Foundation

Cite refine.bio

Casey S. Greene, Dongbo Hu, Richard W. W. Jones, Stephanie Liu, David S. Mejia, Rob Patro, Stephen R. Piccolo, Ariel Rodriguez Romero, Hirak Sarkar, Candace L. Savonen, Jaclyn N. Taroni, William E. Vauclain, Deepashree Venkatesh Prasad, Kurt G. Wheeler. refine.bio: a resource of uniformly processed publicly available gene expression datasets.
URL: https://www.refine.bio

Note that the contributor list is in alphabetical order as we prepare a manuscript for submission.

BSD 3-Clause LicensePrivacyTerms of UseContact