This SuperSeries is composed of the SubSeries listed below.
Combined inhibition of receptor tyrosine and p21-activated kinases as a therapeutic strategy in childhood ALL.
Specimen part, Disease, Disease stage, Time
View SamplesThe purpose of this study was the principal investigation and frequency of RTK expression in primary T-ALLs. Primary initial T-ALLs were assessed regarding their transcriptome-wide expression profiles and screend for prominent RTK expression.
Combined inhibition of receptor tyrosine and p21-activated kinases as a therapeutic strategy in childhood ALL.
Disease, Disease stage
View SamplesDeregulated RTK activity has been implicated as a causal leukemogenic factor in the context of molecular aberrations that perturb differentiation in the hematopoietic lineage such as in childhood ALL. A deeper understanding of RTK signaling processes on a system-wide scale will be key in defining critical components of signaling networks. To link RTK activity with in vivo output in primary ALL we took a functional approach, which combined SH2 domain binding, mass spectrometry, and transcriptome analyses. Structure and composition of evolving networks were highly diverse with few generic features determined by receptor and cell type. A combinatorial assembly of varying context-dependent and few generic signaling components at multiple levels likely generates output specificity. PAK2 was identified as a phosphoregulated FLT3 target, whose allosteric inhibition resulted in apoptosis of ALL cells. Our studies provide evidence that a functional approach to leukemia signaling may yield valuable information for a network-directed intervention.
Combined inhibition of receptor tyrosine and p21-activated kinases as a therapeutic strategy in childhood ALL.
Specimen part, Time
View SamplesTranscriptome analysis of control and MALAT1 lncRNA-depleted RNA samples from human diploid lung fibroblasts [WI38]
Long noncoding RNA MALAT1 controls cell cycle progression by regulating the expression of oncogenic transcription factor B-MYB.
Specimen part, Cell line
View SamplesVAChT KDHOM mice have a 70% decrease in the vesicular acetylcholine transporter (VAChT) and this leads to a systemic decrease in ACh release and cardiac dysfunction.
An analysis of the myocardial transcriptome in a mouse model of cardiac dysfunction with decreased cholinergic neurotransmission.
Sex, Age, Specimen part
View SamplesLong non-coding RNAs (lncRNAs) regulate vital biological processes, including cell proliferation, differentiation and development. A subclass of lncRNAs is synthesized from microRNA host genes (MIRHGs) due to pre-miRNA processing, and is categorized as miRNA-host gene lncRNAs (lnc-miRHGs). Presently, it is not clear whether lnc-miRHG perform additional functions. We demonstrate a miRNA-independent role for a nuclear-enriched lnc-miRHG in cell cycle progression. MIR100HG produces spliced and stable lncRNAs (lnc-MIR100HG) that display elevated levels during the G1 phase of the cell cycle. Depletion of lnc-MIR100HG in human cells results in aberrant cell cycle progression with out altering the levels of miRNA encoded within MIR100HG. Notably, lnc-MIR100HG interacts with the HuR/Elav as well as with several of HuR-target mRNAs. Further, lnc-MIR100HG-depleted cells show reduced interaction between HuR and its target mRNAs, indicating that lnc-MIR100HG facilitates interaction between HuR and target mRNAs. Our studies have unearthed novel roles played by miRHG-encoded lncRNAs in regulating RNA binding protein activity, thereby underscoring the importance of determining the function of several hundreds of miRHG lncRNAs that are present in human genome.
MIR100 host gene-encoded lncRNAs regulate cell cycle by modulating the interaction between HuR and its target mRNAs.
Cell line, Treatment
View SamplesIn order to study the transcriptional response of the fly brain to sugar and complete starvation, we first confirmed that 24 hours of sugar and complete starvation in flies is sufficient to elicit a homeostatic response. Subsequently, we used holidic medium to study effects of deficiency of a specfic macronutrient- cabohydrate in the food. To do so , we generated RNA- seq libraries from brains of 5 day old mated adult male flies maintained on different feeding regimes and used the sequencing data to identify diffrentially expressed genes in the brain under different feeding regimes. Overall design: For each condition, we used RNA prepared from 120-130 manually dissected adult fly brains maintained under complete starvation or sugar starvation regime for 24 hours.
Sugar Promotes Feeding in Flies via the Serine Protease Homolog scarface.
Sex, Specimen part, Cell line, Subject
View SamplesMost metabolic studies are conducted in male animals; thus, the molecular mechanism controlling gender-specific pathways has been neglected, including sex-dependent responses to peroxisome proliferator-activated receptors (PPARs). Here we show that PPARalpha has broad female-dependent repressive actions on hepatic genes involved in steroid metabolism and inflammation. In males, this effect is reproduced by the administration of synthetic PPARalpha ligand. Using the steroid hydroxylase gene Cyp7b1 as a model, we elucidated the molecular mechanism of this PPARalpha-dependent repression. Initial sumoylation of the ligand-binding domain of PPARalpha triggers the interaction of PPARalpha with the GA-binding protein alpha bound to the target promoter. Histone deacetylase is then recruited, and histones and adjacent Sp1-binding site are methylated. These events result in the loss of Sp1-stimulated expression, and thus the down-regulation of Cyp7b1. Physiologically, this repression confers protection against estrogen-induced intrahepatic cholestasis, paving the way for a novel therapy against the most common hepatic disease during pregnancy.
Sumoylated PPARalpha mediates sex-specific gene repression and protects the liver from estrogen-induced toxicity in mice.
No sample metadata fields
View SamplesA mutant previously isolated from a screen of EMS-mutagenized Arabidopsis lines, per1, showed normal root hair development under control conditions but displayed an inhibited root hair elongation phenotype upon Pi deficiency. Additionally, the per1 mutant exhibited a pleiotropic phenotype under control conditions, resembling Pi-deficient plants in several aspects. Under Pi deficiency, the accumulation of Pi and iron was increased in the mutant when compared to the wild-type. Inhibition of root hair elongation upon growth on low Pi media was reverted by treatment with the Pi analog phosphite, suggesting that the mutant phenotype is not the result of a defect in Pi sensing. Reciprocal grafting experiments revealed that the mutant rootstock is sufficient to cause the phenotype. Transcriptional profiling of per1 and wild-type plants subjected to short-term Pi starvation revealed genes that may be important for the signaling of Pi deficiency. We conclude that UBP14 function is crucial for adapting root development to the prevailing local availability of phosphate.
Ubiquitin-specific protease 14 (UBP14) is involved in root responses to phosphate deficiency in Arabidopsis.
Specimen part
View SamplesAim: To examine transcriptional changes in DLD-1 cells exposed to softer matrices (2 kPa and 55 kPa) and identify the chromosomes that are enriched with maximmally deregulated genes Methods: DLD-1 cells (otherwise growing on stiff tissue culture plastic substrates) were exposed to softer matrices for 90 minutes and to collagen coated glass coverslips (served as control) served as control) Results: RNA sequencing revealed nearly equivalent transcriptional deregulation in cells on both the polyacrylamide matrices (783 genes up and 872 genes down on 2 kPa, 649 genes up and 783 genes down on 55 kPa) when compared to cells on glass. Additionally, GO classification revealed that unique sets of transcriptionally deregulated genes (log fold=2) belonged to pathways associated with transcription regulation, chromatin organization, cell cycle and DNA damage/repair Results: We identified chromosomes 1, 2, 3, 6, 7, 10, 12, 14, 17 and 19 to be maximally enriched with the deregulated genes on softer matrices (log fold=2), while chromosomes 13, 18 and 21 showed minimal enrichment of deregulated genes. We also examined the spatial organization of chromosome 1, 18 and 19 territories in cells on softer matrices (using 3D-FISH) and observed that these chromosomes were mislocalized away from their conserved nuclear locations Conclusions: Our study reports the transcriptomic changes in DLD-1 cells upon lowering of extracellular substrate stiffnes and its impact on the spatial positioning of chromosome territories Overall design: RNA Seq profiles for DLD-1 cells on soft polyacrylamide matrices of ~2 kPa and ~55 kPa (reference - glass) were generated across 2 independent biological replicates using Illumina HiSeq platform
Emerin modulates spatial organization of chromosome territories in cells on softer matrices.
Cell line, Subject
View Samples