refine.bio
  • Search
      • Normalized Compendia
      • RNA-seq Sample Compendia
  • Docs
  • About
  • My Dataset
github link
Showing
of 546 results
Sort by

Filters

Technology

Platform

accession-icon GSE24327
Lack of Toll-like Receptor Signaling Improves Host Defense in Severe Septic Peritonitis in Severe Septic Peritonitis
  • organism-icon Mus musculus
  • sample-icon 12 Downloadable Samples
  • Technology Badge Icon Affymetrix Mouse Gene 1.0 ST Array (mogene10st)

Description

TLRs are considered important for innate immune responses that combat bacterial infections. Here, the role of TLRs in severe septic peritonitis using the colon ascendens stent peritonitis (CASP) model was examined. We demonstrate that mice deficient for MyD88 and TRIF had markedly reduced bacterial numbers both in peritoneal cavity and peripheral blood, indicating that bacterial clearance in this model is inhibited by TLR signals. Moreover, survival of Myd88-/-;TrifLps2/Lps2 mice was significantly improved. The lack of TLR signals prevented the excessive induction of inflammatory cytokines and of IL 10. Notably, the expression of IFN-gamma, which has an essential protective role in septic peritonitis, and of IFN-regulated genes including several p47 and p65 GTPases as well as IP 10 was independent of TLR signaling. These results provide evidence that, in severe septic peritonitis, TLR deficiency balances the innate immune response in a favorable manner by attenuating deleterious responses such as excessive cytokine release, while leaving intact protective IFN-gamma production.

Publication Title

Improved host defense against septic peritonitis in mice lacking MyD88 and TRIF is linked to a normal interferon response.

Sample Metadata Fields

Specimen part, Treatment

View Samples
accession-icon GSE20276
Silencing of C2TA reveals the autonomous role of medullary thymic epithelial cells in central CD4 T cell tolerance
  • organism-icon Mus musculus
  • sample-icon 9 Downloadable Samples
  • Technology Badge Icon Affymetrix Mouse Gene 1.0 ST Array (mogene10st)

Description

[original title] Tissue-specific silencing of C2TA reveals the autonomous role of medullary thymic epithelial cells in central CD4 T cell tolerance.

Publication Title

Autonomous role of medullary thymic epithelial cells in central CD4(+) T cell tolerance.

Sample Metadata Fields

Sex, Specimen part

View Samples
accession-icon GSE47679
B cell-intrinsic STAT6 controls the germinal center response in type 2 immunity
  • organism-icon Mus musculus
  • sample-icon 2 Downloadable Samples
  • Technology Badge Icon Affymetrix Mouse Genome 430 2.0 Array (mouse4302)

Description

By investigating the germinal center (GC) formation in STAT6ko/WT bone marrow-mixed chimera we found that GC formation in type 2 immune responses is dependent on B cell intrinsic expression of IL-4/IL-13-induced genes. We therefore used microarrays to find Stat6 dependent genes that are important for germinal center formation and/or organization after infection with the nematode Nippostrongylus brasiliensis (N. brasiliensis).

Publication Title

B-cell-intrinsic STAT6 signaling controls germinal center formation.

Sample Metadata Fields

Specimen part

View Samples
accession-icon GSE30457
Dissecting primary (translation independent) from secondary (translation dependent) IFN-mediated differential gene expression
  • organism-icon Mus musculus
  • sample-icon 18 Downloadable Samples
  • Technology Badge Icon Affymetrix Mouse Genome 430 2.0 Array (mouse4302)

Description

NIH-3T3 cells were pretreated for 15 min with either DMSO (mock) or cycloheximide followed by addition of either mock, 100 U/ml IFNalpha or 100 U/ml IFNgamma for 1h. During the last 30 min, 500 M 4-thiouridine was added to cell culture medium. Total cellular RNA was isolated using Trizol reagent and nascent RNA was purified as described (Dlken et al. RNA 2008) . Three replicates of nascent RNA were analyzed by Affymetrix Mouse Gene ST 1.0 arrays

Publication Title

Deciphering the modulation of gene expression by type I and II interferons combining 4sU-tagging, translational arrest and in silico promoter analysis.

Sample Metadata Fields

Cell line

View Samples
accession-icon GSE36100
DKK2 Mediates Osteolysis, Invasiveness, and Metastatic Spread in Ewing Sarcoma
  • organism-icon Homo sapiens
  • sample-icon 6 Downloadable Samples
  • Technology Badge Icon Affymetrix Human Gene 1.0 ST Array (hugene10st)

Description

Ewing sarcoma, an osteolytic malignancy that mainly affects children and young adults, is characterized

Publication Title

DKK2 mediates osteolysis, invasiveness, and metastatic spread in Ewing sarcoma.

Sample Metadata Fields

Cell line

View Samples
accession-icon GSE48010
Transcriptomic profiling of Ewing's sarcoma cell lines after knockdown of TRIP6
  • organism-icon Homo sapiens
  • sample-icon 8 Downloadable Samples
  • Technology Badge Icon Affymetrix Human Gene 1.0 ST Array (hugene10st)

Description

This study aimed to explore the role of the Zyxin-related protein TRIP6 (thyroid receptor interacting protein 6) in Ewing's sarcoma (ES). By interrogation of published miccroarray data, we observed that of all seven Zyxin-proteins only TRIP6 is highly overexpressed in ES compared to normal tissues. RNA interference experiments and subsequent microarray and gene-set enrichment analyses indicated that TRIP6 expression is associated wth a pro-proliferative and pro-invasive transcriptional signature. Consistently, functional assays demonstrated that TRIP6 promotes migration, invasion, long-term proliferation and clonogencity of ES cells.

Publication Title

The Zyxin-related protein thyroid receptor interacting protein 6 (TRIP6) is overexpressed in Ewing's sarcoma and promotes migration, invasion and cell growth.

Sample Metadata Fields

Specimen part, Cell line, Treatment

View Samples
accession-icon GSE34670
Gene expression in pediatric cALL
  • organism-icon Homo sapiens
  • sample-icon 37 Downloadable Samples
  • Technology Badge Icon Affymetrix Human Genome U133A Array (hgu133a)

Description

Common ALL (cALL) is the most frequent entity of childhood ALL and carries an early pre-B cell phenotype. Expression patterns of 25 pediatric cALL samples were analyzed by use of high-density DNA microarrays HG-U133A.

Publication Title

MondoA is highly overexpressed in acute lymphoblastic leukemia cells and modulates their metabolism, differentiation and survival.

Sample Metadata Fields

Specimen part

View Samples
accession-icon GSE34515
Gene expression profiles of human blood classical monocytes (CD14++CD16-), CD16 positive monocytes (CD14+16++ and CD14++CD16+), and CD1c+ CD19- dendritic cells [human data]
  • organism-icon Homo sapiens
  • sample-icon 9 Downloadable Samples
  • Technology Badge Icon Affymetrix Human Genome U133 Plus 2.0 Array (hgu133plus2)

Description

In this study gene expression of human blood classical monocytes (CD14++CD16-), CD16 positive monocytes (consisting of non-classical CD14+16++ and intermediate CD14++CD16+ monocytes) and CD1c+ CD19- dendritic cells from healthy subjects were investigated.

Publication Title

Transcript profiling of CD16-positive monocytes reveals a unique molecular fingerprint.

Sample Metadata Fields

Specimen part

View Samples
accession-icon GSE33967
MondoA is highly expressed in acute lymphoblastic leukemia and modulates metabolism, differentiation and survival
  • organism-icon Homo sapiens
  • sample-icon 5 Downloadable Samples
  • Technology Badge Icon Affymetrix Human Gene 1.0 ST Array (hugene10st)

Description

Acute lymphoblastic leukemia (ALL) is the most common childhood cancer. To identify novel candidates for targeted treatment of childhood ALL, we performed a comprehensive transcriptome analysis yielding a set of genes specifically overexpressed in ALL. Among them we identified MondoA - a transcription factor regulating glycolysis in response to glucose availability. Here, we confirm that MondoA is highly overexpressed ALL, whereas the MondoA paralog, MondoB, is not expressed. Expression studies revealed that MondoA is not regulated by glucose availability in leukemia cells, but by the presence of lactate. An in silico MondoA promoter analysis identified two methylation-prone CpG-islands and four conserved binding sites for runt-related transcription factor 1 (RUNX1). In fact, MondoA and RUNX1 are significantly coexpressed in leukemia and experimental blockage of DNA methylation leads to a further induction of MondoA. In addition, using microarray profiling, gene-set enrichment analysis and RNA interference we provide for the first time evidence that MondoA expression not only increases glucose catabolism, but also maintains a more immature ALL phenotype, which is associated with enhanced survival and clonogenicity of leukemia cells. These data hint to an important contribution of MondoA to leukemia aggressiveness validating MondoA as an attractive candidate for targeted treatment of ALL.

Publication Title

MondoA is highly overexpressed in acute lymphoblastic leukemia cells and modulates their metabolism, differentiation and survival.

Sample Metadata Fields

Specimen part, Cell line

View Samples
accession-icon GSE56021
in vitro differentiated Th0, Th17, and Tr1 cells
  • organism-icon Mus musculus
  • sample-icon 15 Downloadable Samples
  • Technology Badge Icon Affymetrix Mouse Gene 1.0 ST Array (mogene10st)

Description

Gene expression profiling of in vitro differentiated murine Th cell subsets. Flow cytometrically sorted naive Th cells (CD4+ CD44- Foxp3-) were polyclonally stimulated in vitro for 3 days using 4 g/ml plate-bound antibody to CD3 (145-2C11) and 2 g/ml soluble antibody to CD28 (PV-1).

Publication Title

IL-27 and IL-12 oppose pro-inflammatory IL-23 in CD4+ T cells by inducing Blimp1.

Sample Metadata Fields

Specimen part

View Samples
...

refine.bio is a repository of uniformly processed and normalized, ready-to-use transcriptome data from publicly available sources. refine.bio is a project of the Childhood Cancer Data Lab (CCDL)

fund-icon Fund the CCDL

Developed by the Childhood Cancer Data Lab

Powered by Alex's Lemonade Stand Foundation

Cite refine.bio

Casey S. Greene, Dongbo Hu, Richard W. W. Jones, Stephanie Liu, David S. Mejia, Rob Patro, Stephen R. Piccolo, Ariel Rodriguez Romero, Hirak Sarkar, Candace L. Savonen, Jaclyn N. Taroni, William E. Vauclain, Deepashree Venkatesh Prasad, Kurt G. Wheeler. refine.bio: a resource of uniformly processed publicly available gene expression datasets.
URL: https://www.refine.bio

Note that the contributor list is in alphabetical order as we prepare a manuscript for submission.

BSD 3-Clause LicensePrivacyTerms of UseContact