refine.bio
  • Search
      • Normalized Compendia
      • RNA-seq Sample Compendia
  • Docs
  • About
  • My Dataset
github link
Showing
of 204 results
Sort by

Filters

Technology

Platform

accession-icon GSE40709
Expression data comparing adult human islets to human embryonic stem cell-derived insulin-positive and insulin-negative cells
  • organism-icon Homo sapiens
  • sample-icon 9 Downloadable Samples
  • Technology Badge Icon Affymetrix Human Genome U133 Plus 2.0 Array (hgu133plus2)

Description

The study was completed to compare expression profiles of primary human beta cells (in the form of adult human islets), to the expression profile of hESC-derived beta-like cells. A HES3 line modified by homologous recombination to express GFP under the insulin promoter allowed us to FACS sort the hESC-derived cells into purified insulin-positive (presumably beta-like cells), and insulin-negative populations.

Publication Title

The functional and molecular characterisation of human embryonic stem cell-derived insulin-positive cells compared with adult pancreatic beta cells.

Sample Metadata Fields

Specimen part

View Samples
accession-icon GSE55028
CMPF alters expression of genes related to metabolism in isolated mouse islets
  • organism-icon Mus musculus
  • sample-icon 6 Downloadable Samples
  • Technology Badge Icon Affymetrix Mouse Genome 430 2.0 Array (mouse4302)

Description

CMPF is elevated in diabetes and is associated with impaired insulin secretion. We used microarrays to determine the effect of CMPF on gene expression in isolated islets.

Publication Title

The furan fatty acid metabolite CMPF is elevated in diabetes and induces β cell dysfunction.

Sample Metadata Fields

Sex, Age, Specimen part, Treatment

View Samples
accession-icon SRP069755
FoxO1 Deacetylation Decreases Fatty Acid Oxidation in beta-cells and Sustains Insulin Secretion in Diabetes
  • organism-icon Mus musculus
  • sample-icon 4 Downloadable Samples
  • Technology Badge IconIllumina HiSeq 2000

Description

Pancreatic beta-cell dysfunction contributes to onset and progression of type 2 diabetes. In this state beta-cells become metabolically inflexible, losing the ability to select between carbohydrates and lipids as substrates for mitochondrial oxidation. These changes lead to beta-cell dedifferentiation. We have proposed that FoxO proteins are activated through deacetylation-dependent nuclear translocation to forestall the progression of these abnormalities. However, how deacetylated FoxO exert their actions remains unclear. To address this question, we analyzed islet function in mice homozygous for knock-in alleles encoding deacetylated FoxO1 (6KR). Islets expressing 6KR mutant FoxO1 have enhanced insulin secretion in vivo and ex vivo, and decreased fatty acid oxidation ex vivo. Remarkably, the gene expression signature associated with FoxO1 deacetylation differs from wild-type by only ~2% of the > 4,000 genes regulated in response to re-feeding. But this narrow swath includes key genes required for beta-cell identity, lipid metabolism, and mitochondrial fatty acid and solute transport. The data support the notion that deacetylated FoxO1 protects beta-cell function by limiting mitochondrial lipid utilization, and raise the possibility that inhibition of fatty acid oxidation in ß-cells is beneficial to diabetes treatment. Overall design: Examined 2 different feeding state and 2 different genotypes

Publication Title

FoxO1 Deacetylation Decreases Fatty Acid Oxidation in β-Cells and Sustains Insulin Secretion in Diabetes.

Sample Metadata Fields

Cell line, Subject

View Samples
accession-icon GSE36067
Role of microRNAs in compensatory b-cell mass expansion associated with pregnancy and obesity
  • organism-icon Rattus norvegicus
  • sample-icon 6 Downloadable Samples
  • Technology Badge Icon Affymetrix Rat Gene 1.0 ST Array (ragene10st)

Description

We found that in rodents, b-cell mass expansion during pregnancy and obesity is associated with changes in the expression of a group of islet microRNAs. We were able to reproduce in isolated pancreatic islets the decrease of miR-338-3p level observed in gestation and obesity by activating the G-protein coupled estrogen receptor GPR30 and the GLP1 receptor. Blockade of miR-338-3p in b-cells using specific anti-miR molecules mimicked gene expression changes occurring during b-cell mass expansion and resulted in increased proliferation and improved survival both in vitro and in vivo. These findings point to a major role for miR-338-3p in compensatory b-cell mass expansion occurring under different insulin resistance states.

Publication Title

MicroRNAs contribute to compensatory β cell expansion during pregnancy and obesity.

Sample Metadata Fields

Sex, Specimen part, Cell line

View Samples
accession-icon GSE25400
Reconstituted human epidermis cultures treated with IL-1 family cytokines for 24 hours.
  • organism-icon Homo sapiens
  • sample-icon 16 Downloadable Samples
  • Technology Badge Icon Affymetrix Human Gene 1.0 ST Array (hugene10st)

Description

Analysis of stratified epidermal cultures treated with IL-1a, IL-1F5, IL-1F6, IL-1F8 and IL-1F9 to determine the effects of these cytokines at 24h. Results provide insight into the role of IL-1 family cytokines in the pathogenesis of psoriasis.

Publication Title

IL-1F5, -F6, -F8, and -F9: a novel IL-1 family signaling system that is active in psoriasis and promotes keratinocyte antimicrobial peptide expression.

Sample Metadata Fields

Specimen part, Treatment

View Samples
accession-icon SRP031857
Transcriptome Sequencing During Mouse Brain Development Identifies Long Non-Coding RNAs Functionally Involved in Neurogenic Commitment
  • organism-icon Mus musculus
  • sample-icon 9 Downloadable Samples
  • Technology Badge IconIllumina HiSeq 2000

Description

Transcriptome analysis of somatic stem cells and their progeny is fundamental to identify new factors controlling proliferation versus differentiation during tissue formation. Here we generated a combinatorial, fluorescent reporter mouse line to isolate proliferating neural stem cells, differentiating progenitors and newborn neurons that coexist as intermingled cell populations during brain development. Transcriptome sequencing revealed numerous novel long non-coding (lnc)RNAs and uncharacterized protein-coding transcripts identifying the signature of neurogenic commitment. Importantly, most lncRNAs overlapped neurogenic genes and shared with them a nearly identical expression pattern suggesting that lncRNAs control corticogenesis by tuning the expression of nearby cell fate determinants. We assessed the power of our approach by manipulating lncRNAs and protein-coding transcripts with no function in corticogenesis reported to date. This led to several evident phenotypes in neurogenic commitment and neuronal survival indicating that our study provides a remarkably high number of uncharacterized transcripts with hitherto unsuspected roles in brain development. Finally, we focussed on one lncRNA, Miat, whose manipulation was found to trigger pleiotropic effects on brain development and aberrant splicing of Wnt7b. Hence, our study suggests that lncRNA-mediated alternative splicing of cell fate determinants controls stem cell commitment during neurogenesis. “LncRNAs control neurogenesis” Aprea, Prenninger, Dori, Monasor, Wessendof, Zocher, Massalini, Ghosh, Alexopoulou, Lesche, Dahl, Groszer, Hiller, Calegari, The EMBO Journal (In Press) Overall design: mRNA profiles of Proliferating Progenitors, Differentiating Progenitors and Neurons from lateral cortex of E14.5 mouse embryos. Each cell type in three biological replicates.

Publication Title

Transcriptome sequencing during mouse brain development identifies long non-coding RNAs functionally involved in neurogenic commitment.

Sample Metadata Fields

No sample metadata fields

View Samples
accession-icon SRP101737
Genome Scale Analysis of miRNA and mRNA regulation during preterm labor [whole blood]
  • organism-icon Homo sapiens
  • sample-icon 33 Downloadable Samples
  • Technology Badge IconIllumina HiSeq 2500

Description

The goal of this study was to define relationships between peripheral blood miRNAs and mRNAs of women undergoing idiopathic preterm labor (PTL) and compare network level changes to control women that deliver at term.Using RNA Sequencing we have performed global miRNA and mRNA profiling in both monocytes and whole blood leukocytes of women who underwent PTL (N=15) matched to non-pathological controls (N=30) as a part of the Ontario Birth Study cohort. We have identified differentially expressed miRNAs, mRNAs and pathways associated with PTL. Intriguingly, we found perturbations in many cellular signaling pathways, particularly in interleukin signaling. We also predicted mRNA targets for specific miRNAs and used these predictions to build putative miRNA-mRNA networks. We identified 6 miRNAs significantly associated with PTL whose expression is negatively correlated with expression of 14 predicted mRNA targets that are also significantly associated with PTL. Overall design: miRNA and mRNA were quantified from whole blood and monocytes of women undergoing spontaneous preterm labor compared to nonlabor controls matched on gestational age

Publication Title

Comparative analysis of gene expression in maternal peripheral blood and monocytes during spontaneous preterm labor.

Sample Metadata Fields

Subject

View Samples
accession-icon GSE27628
Expression data from affected skin from psoriasis mouse models and normal skin from control mice
  • organism-icon Mus musculus
  • sample-icon 34 Downloadable Samples
  • Technology Badge Icon Affymetrix Mouse Genome 430 2.0 Array (mouse4302)

Description

Development of a suitable mouse model would facilitate the investigation of pathomechanisms underlying human psoriasis and would also assist in development of therapeutic treatments. However, while many psoriasis mouse models have been proposed, no single model recapitulates all features of the human disease, and standardized validation criteria for psoriasis mouse models have not been widely applied. In this study, whole-genome transcriptional profiling is used to compare gene expression patterns manifested by human psoriatic skin lesions with those that occur in five psoriasis mouse models (K5-Tie2, imiquimod, K14-AREG, K5-Stat3C and K5-TGFbeta1). While the cutaneous gene expression profiles associated with each mouse phenotype exhibited statistically significant similarity to the expression profile of psoriasis in humans, each model displayed distinctive sets of similarities and differences in comparison to human psoriasis. For all five models, correspondence to the human disease was strong with respect to genes involved in epidermal development and keratinization. Immune and inflammation-associated gene expression, in contrast, was more variable between models as compared to the human disease. These findings support the value of all five models as research tools, each with identifiable areas of convergence to and divergence from the human disease. Additionally, the approach used in this paper provides an objective and quantitative method for evaluation of proposed mouse models of psoriasis, which can be strategically applied in future studies to score strengths of mouse phenotypes relative to specific aspects of human psoriasis.

Publication Title

Genome-wide expression profiling of five mouse models identifies similarities and differences with human psoriasis.

Sample Metadata Fields

Specimen part

View Samples
accession-icon GSE9161
Expression profiling of cyclin D1 splice variants cyclin D1a and D1b in mouse 3T3 cells.
  • organism-icon Mus musculus
  • sample-icon 9 Downloadable Samples
  • Technology Badge Icon Affymetrix Mouse Genome 430 2.0 Array (mouse4302)

Description

Cyclin D1 is an important cell cycle regulator but in cancer its overexpression also increases cellular migration mediated by p27KIP1 stabilization and RhoA inhibition. Recently, a common polymorphism at the exon 4-intron 4 boundary of the human cyclin D1 gene within a splice donor region was associated with an altered risk of developing cancer. Altered RNA splicing caused by this polymorphism gives rise to a variant cyclin D1 isoform termed cyclin D1b, which has the same N-terminus as the canonical cyclin D1a isoform but a distinct C-terminus. Analysis was performed of mouse cyclin D1 knockout 3T3 cells infected with splice variants of cyclin D1. 3T3 cells transduced with retroviral vectors expressing each cyclin D1 isoform were processed for expression analysis.

Publication Title

Alternate cyclin D1 mRNA splicing modulates p27KIP1 binding and cell migration.

Sample Metadata Fields

No sample metadata fields

View Samples
accession-icon GSE16048
Expression profiling of pancreatic beta-cells harboring a pancreatic-specific deletion of PPAR-beta
  • organism-icon Mus musculus
  • sample-icon 6 Downloadable Samples
  • Technology Badge Icon Affymetrix Mouse Genome 430 2.0 Array (mouse4302)

Description

Peroxisome proliferator-activated receptor beta/delta protects against obesity by reducing dyslipidemia and insulin resistance via effects in various organs, including muscle, adipose tissue, liver, and heart. However, nothing is known about the function of PPAR-beta in pancreas, a prime organ in the control of glucose metabolism. To gain insight into so far hypothetical functions of this PPAR isotype in insulin production, we specifically ablated Ppar-beta in pancreas. The mutated mice developed a chronic hyperinsulinemia, due to an increase in both beta-cell mass and insulin secretion. Gene expression profiling indicated a broad repressive function of PPAR-beta impacting the vesicular compartment, actin cytoskeleton, and metabolism of glucose and fatty acids. Analyses of insulin release from the islets revealed an increased second-phase glucose-stimulated insulin secretion. Higher levels of PKD, PKC-delta and diacyglycerol in mutated animals lead to an enhanced formation of trans-Golgi network (TGN)-to-plasma-membrane transport carriers in concert with F-actin disassembly, which resulted in increased insulin secretion and its associated systemic effects. Taken together, these results provide evidence for PPAR-beta playing a repressive role on beta-cell growth and insulin exocytosis, which shed new light on its anti-obesity action.

Publication Title

PPARβ/δ affects pancreatic β cell mass and insulin secretion in mice.

Sample Metadata Fields

Age, Specimen part

View Samples
...

refine.bio is a repository of uniformly processed and normalized, ready-to-use transcriptome data from publicly available sources. refine.bio is a project of the Childhood Cancer Data Lab (CCDL)

fund-icon Fund the CCDL

Developed by the Childhood Cancer Data Lab

Powered by Alex's Lemonade Stand Foundation

Cite refine.bio

Casey S. Greene, Dongbo Hu, Richard W. W. Jones, Stephanie Liu, David S. Mejia, Rob Patro, Stephen R. Piccolo, Ariel Rodriguez Romero, Hirak Sarkar, Candace L. Savonen, Jaclyn N. Taroni, William E. Vauclain, Deepashree Venkatesh Prasad, Kurt G. Wheeler. refine.bio: a resource of uniformly processed publicly available gene expression datasets.
URL: https://www.refine.bio

Note that the contributor list is in alphabetical order as we prepare a manuscript for submission.

BSD 3-Clause LicensePrivacyTerms of UseContact