Analysis of the human monocyte-derived macrophage (hMDM) transcriptional response to L. pneumophila infection at 8 hours post-infection
The transcriptome of Legionella pneumophila-infected human monocyte-derived macrophages.
Specimen part
View SamplesWe advance a three gene model of arsenate tolerance in rice based on testing root growth of 108 recombinant inbred lines (RILs) of the Bala x Azucena population. Marker genotype at 3 loci determined arsenate tolerance in 99% of RILs tested. Interestingly, plants must inherit 2, but any two alleles from the tolerant parent (Bala) to have the tolerant phenotype. Challenging the Affymetrix GeneChip Rice Genome array with Azucena and Bala RNA isolated from control and arsenate treated plants revealed 592 genes 2 fold-upregulated by arsenate and 696 downregulated. The array data was also used to identify which genes are expressed within the three target loci.
Rice-arsenate interactions in hydroponics: whole genome transcriptional analysis.
No sample metadata fields
View SamplesA study of diabetic neuropathy in dorsal root ganglia from streptozotocin-diabetic male wistar rats over the first 8 weeks of diabetes
Identification of changes in gene expression in dorsal root ganglia in diabetic neuropathy: correlation with functional deficits.
Sex, Age, Specimen part, Disease, Disease stage, Time
View SamplesThe aim of this study was to determine the changes in gene expression of rice root tips when they came in to contact with a hard layer (60% wax layer). Three categories of root tips were sampled; tips before the hard layer, tips that had come into contact with the hard layer and root tips which had buckled after coming into contact with the hard layer.
A bioinformatic and transcriptomic approach to identifying positional candidate genes without fine mapping: an example using rice root-growth QTLs.
No sample metadata fields
View SamplesDominantly inherited expanded repeat neurodegenerative diseases are typically caused by the expansion of existing variable copy number tandem repeat sequences in otherwise unrelated genes. Repeats located in translated regions encode polyglutamine that is thought to be the toxic agent, however in several instances the expanded repeat is in an untranslated region, necessitating multiple pathogenic pathways or an alternative common toxic agent. As numerous clinical features are shared by several of these diseases, and expanded repeat RNA is a common intermediary, RNA has been proposed as a common pathogenic agent. Various forms of repeat RNA are toxic in animal models, by multiple distinct pathways. In Drosophila, repeat-containing double-stranded RNA (rCAG.rCUG~100) toxicity is dependent on Dicer processing evident with the presence of single-stranded rCAG7, which have been detected in affected HD brains. Microarray analysis of Drosophila rCAG.rCUG~100 repeat RNA toxicity revealed perturbation of several pathways including innate immunity. Recent reports of elevated circulating cytokines prior to clinical onset, and age-dependent increased inflammatory signaling and microglia activation in the brain, suggest that immune activation precedes neuronal toxicity. Since the Toll pathway is activated by certain forms of RNA, we assessed the role of this pathway in RNA toxicity. We find that rCAG.rCUG~100 activates Toll signaling and that RNA toxicity is dependent on this pathway. The sensitivity of RNA toxicity to autophagy further implicates innate immune activation. Expression of rCAG.rCUG~100 was therefore directed in glial cells and found to be sufficient to cause neuronal dysfunction. Non-autonomous toxicity due to expanded repeat-containing double-stranded RNA mediated activation of innate immunity is therefore proposed as a candidate pathway for this group of human genetic diseases.
Distinct roles for Toll and autophagy pathways in double-stranded RNA toxicity in a Drosophila model of expanded repeat neurodegenerative diseases.
Sex, Specimen part, Disease
View SamplesWe identified DCIR2+DCs but not DEC205+DCs as able to induce peripheral T cell tolerance in pre-diabetic autoimmune NOD mice. To determine what distinct genetic programs are elicited in the auto-reactive CD4 T cells early after stimulation by these two DC subsets, we utilized adoptive transfer of BDC2.5 CD4 T cells into NOD mice, which were then given chimeric antibody to deliver the beta-cell specific antigen to either DCIR2+DCs or DEC205+DCs, leading to BDC2.5 CD4 T cell specific stimulation in vivo. The analysis shows that the negative transcriptional factor Zbtb32 (ROG) is up-regulated more in BDC2.5 CD4 T cells after stimulated with a antigen via DCIR2+DCs presentation, compared with DEC205+DCs, suggesting the involvement of Zbtb32 in DCIR2+DCs-mediated auto-reactive T cell tolerance in disease ongoing NOD mice.
DCIR2+ cDC2 DCs and Zbtb32 Restore CD4+ T-Cell Tolerance and Inhibit Diabetes.
Sex, Age, Specimen part
View SamplesInfection with acute and chronic strains of LCMV (Armstrong (ARM) and Clone 13 (C13), respectively) leads to massive proliferation of monocytic cells contemporaneously with peak of the anti-viral CD8+ T cell response. These cells return to nave levels following ARM infection. However, during C13 infection these cells are sustained at high levels and gain a T cell suppressive function at day 14 post infection. The mechanisms by which these cells are induced to proliferate and impair T cell function during chronic LCMV infection are largely unknown. To address this, we analyzed gene expression profiles using microarray analysis of purified splenic monocytic cells (CD11b+ Ly6Chi Gr-1low) from nave mice, or day 14 LCMV ARM or LCMV C13 infected mice.
Chronic but not acute virus infection induces sustained expansion of myeloid suppressor cell numbers that inhibit viral-specific T cell immunity.
Specimen part
View SamplesThe epidermal growth factor receptor (EGFR) is frequently overexpressed in cancer and is an important therapeutic target. Aberrant expression and function of microRNAs has been associated with tumorigenesis. Bioinformatic predictions suggest that the human EGFR mRNA 3-untranslated region contains three microRNA-7 (miR-7) target sites, which are not conserved across mammals. We found that miR-7 down-regulates EGFR mRNA and protein expression in cancer cell lines (lung, breast, and glioblastoma) via two of the three sites, inducing cell cycle arrest and cell death. Because miR-7 was shown to decrease EGFR mRNA expression, we used microarray analysis to identify additional mRNA targets of miR-7. These included Raf1 and multiple other genes involved in EGFR signaling and tumorigenesis. Furthermore, miR-7 attenuated activation of protein kinase B (Akt) and extracellular signal-regulated kinase 1/2 (ERK1/2), two critical effectors of EGFR signaling, in different cancer cell lines. These data establish an important role for miR-7 in controlling mRNA expression and indicate that miR-7 has the ability to coordinately regulate EGFR signaling in multiple human cancer cell types.
Regulation of epidermal growth factor receptor signaling in human cancer cells by microRNA-7.
No sample metadata fields
View SamplesVitamin D receptors (VDR) are abundantly expressed in developing zebrafish as early as 48 hours post-fertilization, and prior to the development of a mineralized skeleton, and mature intestine and kidney. We probed the role of VDR in zebrafish biology by examining changes in expression of RNA by whole transcriptome shotgun sequencing (RNA-seq) in fish treated with picomolar concentrations of the VDR ligand and hormonal form of vitamin D3, 1a,25-dihydroxyvitamin D3 (1a,25(OH)2D3). We observed significant changes in RNAs encoding proteins of fatty acid, amino acid, and xenobiotic metabolism pathways, and RNAs of transcription factors, leptin, peptide hormones, receptor-activator of NFkB ligand (RANKL), and calcitonin-like ligand receptor pathways. Early small, and subsequent massive changes in >10% of expressed cellular RNAs were observed. At day 2 (24h 1a,25(OH)2D3-treatment), only 5 RNAs were differentially expressed (hormone vs. vehicle). On day 4 (72h-treatment), 78 RNAs; on day 6 (120h-treatment) 1040 RNAs; and on day 7 (144h-treatment), 1755 RNAs were differentially expressed in response to 1a,25(OH)2D3. Fewer RNAs (n = 482) were altered in day 7 embryos treated for 24h with 1a,25(OH)2D3 vs. those treated with hormone for 144h. At 7 days, in 1a,25(OH)2D3-treated embryos, pharyngeal cartilage was larger and mineralization was greater. Changes in expression of RNAs for transcription factors, peptide hormones, and RNAs encoding proteins integral to fatty acid, amino acid, leptin, calcitonin-like ligand receptor, RANKL and xenobiotic metabolism pathways, demonstrate heretofore unrecognized mechanisms by which 1a,25(OH)2D3 functions in vivo in developing eukaryotes. Overall design: Zebrafish embryos were obtained from mating of Segrest wild-type (SWT) parents under controlled barrier conditions, in the Mayo Clinic Zebrafish Core Facility, in Instant Ocean media . Zebrafish embryos (25-30) were placed in 20 mL embryo medium (pH 7.2) containing 1-phenyl-2-thiourea (PTU) (0.003% (w/v) and were maintained at 28-30 oC. At 24 hpf (1 day post fertilization, dpf), 10 microliters of 1a,25(OH)2D3 in ethanol was added to embryos maintained in 20 mL fresh embryo medium with PTU. The final concentration of 1a,25(OH)2D3 was 300 pM. Control zebrafish were treated with 10 microliters ethanol alone (vehicle controls). The medium containing either 300 pM 1a,25(OH)2D3 or vehicle was changed every 24 h . In experiment 1, at 2, 4, 6 and 7 dpf embryos/larvae were removed and immediately frozen at -80 0C for later RNA preparations. 25-30 embryos per set were used for preparation on RNA. At the same times, 7-12 embryos were fixed in 4% paraformaldehyde in 0.75 X Dulbecco's phosphate buffered saline (DPBS). In experiment 2, 6 dpf larvae were treated with 1a,25(OH)2D3 (300 pM) or vehicle for 24 h. RNA was prepared from three sets of larvae.
Detection of 1α,25-dihydroxyvitamin D-regulated miRNAs in zebrafish by whole transcriptome sequencing.
No sample metadata fields
View SamplesRhabdomyosarcoma is a pediatric malignancy thought to arise from the uncontrolled proliferation of myogenic cells. Here, we have generated models of rhabdomyosarcoma in the zebrafish by inducing oncogenic KRASG12D expression at different stages during muscle development. Several zebrafish promoters were used including the cdh15 and rag2 promoters that drive gene expression in early muscle progenitors, and the mylz2 promoter that expresses in differentiating myoblasts. The tumors that developed differed in their ability to recapitulate normal myogenesis. cdh15:KRASG12D and rag2:KRASG12D fish developed tumors that displayed an inability to fully undergo muscle differentiation by histologic appearance and gene expression analyses. In contrast, mylz2:KRASG12D tumors more closely resembled mature skeletal muscle and were most similar to well-differentiated human rhabdomyosarcoma by gene expression. mylz2:KRASG12D fish showed significantly improved survival compared to cdh15:KRASG12D and rag2:KRASG12D fish. Tumor-propagating activity was enriched in myf5-expressing cell populations within all of the tumor types. Our results demonstrate that oncogene expression at different stages during muscle development has profound effects on the ability of tumor cells to recapitulate normal myogenesis, altering the tumorigenic capability of these cells.
Zebrafish rhabdomyosarcoma reflects the developmental stage of oncogene expression during myogenesis.
Specimen part
View Samples