Multiple myeloma (MM) evolves from highly prevalent premalignant condition termed Monoclonal Gammopathy of Undetermined Significance (MGUS). We report an MGUS-MM phenotype arising in transgenic mice with Emu-directed expression of the unfolded protein/ER stress response and plasma cell development spliced isoform factor XBP-1s. Emu-XBP-1s elicited elevated serum Ig and IL-6 levels, skin alterations and with advancing age, a significant proportion of Emu-xbp-1s transgenic mice develop features diagnostic of human MM including bone lytic lesions. Transcriptional profiles of Emu-xbp-1s B lymphoid and MM cells show aberrant expression of genes known to be dysregulated in human MM including Cyclin D1, MAF, MAFB, and APRIL. This genetic model coupled with documented frequent XBP-1s overexpression in human MM serve to implicate chronic XBP-1s dysregulation in the development of this common and lethal malignancy.
The differentiation and stress response factor XBP-1 drives multiple myeloma pathogenesis.
No sample metadata fields
View SamplesWe have determined the consequences of ICN1 overexpression from retroviral vectors introduced into bone marrow cells.
Oncogenesis of T-ALL and nonmalignant consequences of overexpressing intracellular NOTCH1.
No sample metadata fields
View SamplesTranscriptome profiling studies suggest that a large fraction of the genome is transcribed and many transcripts function independent of their protein coding potential. The relevance of noncoding RNAs (ncRNAs) in normal physiological processes and in tumorigenesis is increasingly recognized. Here, we describe consistent and significant differences in the distribution of sense and antisense transcripts between normal and neoplastic breast tissues. Many of the differentially expressed antisense transcripts likely represent long ncRNAs. A subset of genes that mainly generate antisense transcripts in normal but not cancer cells is involved in essential metabolic processes. These findings suggest fundamental differences in global RNA regulation between normal and cancer cells that might play a role in tumorigenesis. Overall design: Global strand-specific transcriptome profilings of 2 samples in cancer and 1 sample in normal from clinical breast tissue using asymmetrical strand-specific analysis of gene expression (ASSAGE).
Altered antisense-to-sense transcript ratios in breast cancer.
No sample metadata fields
View SamplesCritically short telomeres activate cellular senescence or apoptosis, as mediated by the tumor suppressor p53, but in the absence of this checkpoint response, telomere dysfunction engenders chromosomal aberrations and cancer. Here, analysis of p53-regulated genes activated in the setting of telomere dysfunction identified Zfp365 (ZNF365 in humans) as a direct p53 target that promotes genome stability. Germline polymorphisms in the ZNF365 locus are associated with increased cancer risk, including those associated with telomere dysfunction. On the mechanistic level, ZNF365 suppresses expression of a subset of common fragile sites (CFS) including telomeres. In the absence of ZNF365, defective telomeres engage in aberrant recombination of telomere ends, leading to increased telomere sister chromatid exchange (T-SCE) and formation of anaphase DNA bridges, including ultra-fine DNA bridges (UFB), and ultimately increased cytokinesis failure and aneuploidy. Thus, the p53-ZNF365 axis contributes to genomic stability in the setting of telomere dysfunction.
ZNF365 promotes stability of fragile sites and telomeres.
Disease, Cell line, Treatment, Time
View SamplesThis SuperSeries is composed of the SubSeries listed below.
Antitelomerase therapy provokes ALT and mitochondrial adaptive mechanisms in cancer.
Specimen part, Treatment
View SamplesWe used microarray profiling to document the difference between telomerase+ vs. ALT+ T-cell lymphomas developed on G3 Atm-/-TERT-ER genetic background.
Antitelomerase therapy provokes ALT and mitochondrial adaptive mechanisms in cancer.
Specimen part
View SamplesFoxOs cooperatively regulate diverse pathways governing neural stem cell homeostasis
FoxOs cooperatively regulate diverse pathways governing neural stem cell homeostasis.
Cell line
View SamplesWe have developed a nonheuristic genome topography scan (GTS) algorithm to characterize the patterns of genomic alterations in human glioblastoma (GBM), identifying frequent p18INK4C and p16INK4A codeletion. Functional reconstitution of p18INK4C in GBM cells null for both p16INK4A and p18INK4C resulted in impaired cell-cycle progression and tumorigenic potential. Conversely, RNAi-mediated depletion of p18INK4C in p16INK4A-deficient primary astrocytes or established GBM cells enhanced tumorigenicity in vitro and in vivo. Furthermore, acute suppression of p16INK4A in primary astrocytes induced a concomitant increase in p18INK4C. Together, these findings uncover a feedback regulatory circuit in the astrocytic lineage and demonstrate a bona fide tumor suppressor role for p18INK4C in human GBM wherein it functions cooperatively with other INK4 family members to constrain inappropriate proliferation.
Feedback circuit among INK4 tumor suppressors constrains human glioblastoma development.
No sample metadata fields
View SamplesWe have developed a nonheuristic genome topography scan (GTS) algorithm to characterize the patterns of genomic alterations in human glioblastoma (GBM), identifying frequent p18INK4C and p16INK4A codeletion. Functional reconstitution of p18INK4C in GBM cells null for both p16INK4A and p18INK4C resulted in impaired cell-cycle progression and tumorigenic potential. Conversely, RNAi-mediated depletion of p18INK4C in p16INK4A-deficient primary astrocytes or established GBM cells enhanced tumorigenicity in vitro and in vivo. Furthermore, acute suppression of p16INK4A in primary astrocytes induced a concomitant increase in p18INK4C. Together, these findings uncover a feedback regulatory circuit in the astrocytic lineage and demonstrate a bona fide tumor suppressor role for p18INK4C in human GBM wherein it functions cooperatively with other INK4 family members to constrain inappropriate proliferation.
Feedback circuit among INK4 tumor suppressors constrains human glioblastoma development.
No sample metadata fields
View SamplesGene copy numbers of prostate tumors of G3 and G4 generations of LSL-mTert PB-Pten/p53 mouse model
Telomerase reactivation following telomere dysfunction yields murine prostate tumors with bone metastases.
Specimen part
View Samples