In order to understand the effect of genetic background on the response to gene dose perturbation, we performed mRNA transcriptional profiling on 99 hemizygotic lines (Df/+) from the DrosDel project, which have hybrid genetic background of OregonR/w1118. Overall design: We performed RNA-Seq analysis of 417 single adult flies in duplicate or triplicate. Flies are from 73 different genotypes. Differential gene expression was analyzed separately for each sex, gene expression from each genotype was compared to normalized mean of gene expression remaining 72 genotypes.
Dosage-Dependent Expression Variation Suppressed on the <i>Drosophila</i> Male <i>X</i> Chromosome.
Sex, Subject
View SamplesWe performed mRNA transcriptional profiling on 99 hemizygotic lines (Df/+) from the DrosDel project covering 68% of chromosome 2L, in order to understand how changes in gene copy number affect overall transcriptome. Overall design: We performed RNA-Seq analysis on 396 pools of 15-25 adult flies each. Samples include males or females from 99 different genotypes in duplicate. Differential gene expression was analyzed separately for each sex, by comparing each genotype with the remaining 98.
Dosage-Dependent Expression Variation Suppressed on the <i>Drosophila</i> Male <i>X</i> Chromosome.
Sex, Specimen part, Subject
View SamplesTo measure the response to gene dose, we performed mRNA-Seq of fly heads with molecularly defined deletions constructed from DrosDel deficiency lines (Ryder et al. Genetics 2007, 177(1):615-29) on the Illumina HiSeq 2000 platform. Overall design: We performed single-end next-generation sequencing (RNA-Seq) on poly-A+ RNA extracted from adult female and male heads in biological triplicate. Besides wildtype females (XX) and males (XY) that were heterozygous for deletions, we also sequenced females that were transformed into males (XX males) by using mutations in the sex determination gene transformer-2 (tra2). The original lines with deletions, including 22 deletions on the chromosome X and 12 deletions on the chromosome 3L, were from the DrosDel project. The diploid controls without DrosDel deletions were derived from w1118 (the parental line of DrosDel stocks) or Oregon-R Strain. We sequenced a total of 249 samples.
Dosage-Dependent Expression Variation Suppressed on the <i>Drosophila</i> Male <i>X</i> Chromosome.
Sex, Subject
View SamplesTo normalize transcriptome data we combined total RNA isolated from 10^6 resting or activated B cells with 1 µl of 1/10 dilution of Ambion’s ERCC RNA Spike-in Mix (92 mRNA standards). mRNA was then isolated and processed following Illumina’s RNA-seq protocol v2.
Global regulation of promoter melting in naive lymphocytes.
Specimen part, Cell line
View SamplesWe performed RNA-sequencing on human embryonic stem cell samples grown on soft (400Pa) and stiff (60kPa) hydrogels under self-renewal and differentiation conditions Overall design: Whole-transcriptome RNA sequencing in the conditions described
Tissue Mechanics Orchestrate Wnt-Dependent Human Embryonic Stem Cell Differentiation.
Specimen part, Subject
View SamplesAging is accompanied by physiological impairments, which, in insulin-responsive tissues, including the liver, predispose individuals to metabolic disease. However, the molecular mechanisms underlying these changes remain largely unknown. Here, we analyze genome-wide profiles of RNA and chromatin organization in the liver of young (3 months) and old (21 months) mice. Transcriptional changes suggest that de-repression of the nuclear receptors PPARa, PPAR?, and LXRa in aged mouse liver leads to activation of targets regulating lipid synthesis and storage, whereas age-dependent changes in nucleosome occupancy are associated with binding sites for both known regulators (forkhead factors and nuclear receptors) and for novel candidates associated with nuclear lamina (Hdac3 and Srf) implicated to govern metabolic function of aging liver. Winged-helix factor Foxa2 and nuclear receptor co-repressor Hdac3 exhibit reciprocal binding pattern at PPARa targets contributing to gene expression changes that lead to steatosis in aged liver. Overall design: Genome-wide expression profiles (RNA-Seq) from young (3 months) and old (21 months) mouse livers
Changes in nucleosome occupancy associated with metabolic alterations in aged mammalian liver.
No sample metadata fields
View SamplesABSTRACT
Increased expression of bcl11b leads to chemoresistance accompanied by G1 accumulation.
No sample metadata fields
View SamplesWe used the flu mutant of Arabidopsis to detail gene expression in response to singlet oxygen. The conditional flu mutant of Arabidopsis accumulates excess protochlorophyllide in the dark within chloroplast membranes that upon illumination acts as a photosensitizer and generates singlet oxygen. Immediately after the release of singlet oxygen mature flu plants stop growing, whereas seedlings bleach and die. Within the first 30 min after the release of singlet oxygen rapid changes in nuclear gene expression occur. Distinct sets of genes were activated that were different from those induced by other reactive oxygen species, superoxide or hydrogen peroxide.
Rapid induction of distinct stress responses after the release of singlet oxygen in Arabidopsis.
No sample metadata fields
View SamplesWe used microarrays to detail Arabidopsis gene expression in response to paraquat, a herbicide that acts as a terminal oxidant of photosystem I that in the light leads to the enhanced generation of superoxide and hydrogen peroxide inside plastids. Within a few hours after paraquat treatment changes in nuclear gene expression occur. Distinct sets of genes were activated that were different from those induced by another reactive oxygen species, singlet oxygen.
Rapid induction of distinct stress responses after the release of singlet oxygen in Arabidopsis.
No sample metadata fields
View SamplesFollow-up work was performed for SF3A2, a gene among the hits identified in a red blood cell trait GWAS-informed shRNA screen. Differential splicing effects were assayed to investigate resulting effects on the differentiating erythroid cell spliceome and explore potential modifier relationships with other known splicing defects associated with human disease. Overall design: Examination of differential splicing events resulting from knockdown of splicing factor 3a subunit 2 (SF3A2) in three unique donor CD34+ cells populations undergoing erythroid differentiation. Two shRNA targeting SF3A2 were tested, along with a negative control shRNA targeting luciferase (which should not be expressed) using paired-end sequencing.
Gene-centric functional dissection of human genetic variation uncovers regulators of hematopoiesis.
Specimen part, Subject
View Samples