refine.bio
  • Search
      • Normalized Compendia
      • RNA-seq Sample Compendia
  • Docs
  • About
  • My Dataset
github link
Showing
of 79 results
Sort by

Filters

Technology

Platform

accession-icon SRP045708
Humanized Foxp2 Accelerates Making Transitions From Declarative to Procedural Learning
  • organism-icon Mus musculus
  • sample-icon 40 Downloadable Samples
  • Technology Badge IconIlluminaGenomeAnalyzerIIx

Description

Purpose: Foxp2 is the first and for now the only gene connected to speech and language in humans. Two aminoacid substitutions took place in this protein during recent human evolution, after our split from the last common ancestor with chimpanzees, and are most likely to have undergone positive selection in human lineage (Enard et al., 2002). Methods: Transgenic mice in which the wild-type (murine) version of Foxp2 was replaced with the one bearing two human-specific amino acid substitutions (i.e. "humanized" Foxp2) - Foxp2hum/hum, have been compared to their wild-type (WT) counterparts in terms of behavior, electrophysiology and striatal gene expression. The latter was analyzed through RNA-sequencing performed on pooled indexed libraries on three flow cells on Illumina GAIIx. The reads were mapped to mouse genome (mm9) by TopHat 1.4.1 and were counted using Bedtools. mRNA profiles were obtained with more than 20 million reads for every sample. Differential gene expression was analyzed with DESeq using multifactor model (Anders and Huber, 2010). Results: Wild-type and Foxp2hum/hum mice did not show any significant differences in expression at individual gene level, neither in dorsomedial nor in dorsolateral striatum. However, when genes were grouped into functional categories and analyzed accordingly, this revealed a significant downregulation of functional categories related to synaptic signalling and plasticity in dorsomedial striatum of Foxp2hum/hum mice. Overall design: RNA-sequencing was performed on dorsomedial and dorsolateral striatum of wild-type and Foxp2hum/hum mice, on three flow cells Illumina GAIIx. The libraries from each sample were indexed and pooled together.

Publication Title

Humanized Foxp2 accelerates learning by enhancing transitions from declarative to procedural performance.

Sample Metadata Fields

No sample metadata fields

View Samples
accession-icon GSE106350
ZIC2 Is Required For Nodal Expression And The Establishment Of Left-Sided Identity
  • organism-icon Mus musculus
  • sample-icon 6 Downloadable Samples
  • Technology Badge IconIllumina MouseWG-6 v2.0 expression beadchip

Description

The purpose of this study was to identify putative downstream targets of the transcription factor ZIC2 in the mouse embryo. The results indicate loss of NODAL pathway expression, consistent with the observed phenotype of right isomerism in heart, lungs and viscera.

Publication Title

A Requirement for Zic2 in the Regulation of Nodal Expression Underlies the Establishment of Left-Sided Identity.

Sample Metadata Fields

Specimen part

View Samples
accession-icon GSE13093
Feeding schedule and the circadian clock shape rhythms in hepatic gene expression
  • organism-icon Mus musculus
  • sample-icon 64 Downloadable Samples
  • Technology Badge Icon Affymetrix Mouse Genome 430 2.0 Array (mouse4302)

Description

This SuperSeries is composed of the SubSeries listed below.

Publication Title

Time of feeding and the intrinsic circadian clock drive rhythms in hepatic gene expression.

Sample Metadata Fields

No sample metadata fields

View Samples
accession-icon GSE13060
The effects of temporally restricted feeding on hepatic gene expression
  • organism-icon Mus musculus
  • sample-icon 24 Downloadable Samples
  • Technology Badge Icon Affymetrix Mouse Genome 430 2.0 Array (mouse4302)

Description

Temporally restricted feeding is known to impact the circadian clock. This dataset shows the effects of temporally restricted feeding on the hepatic transcriptome.

Publication Title

Time of feeding and the intrinsic circadian clock drive rhythms in hepatic gene expression.

Sample Metadata Fields

No sample metadata fields

View Samples
accession-icon GSE13062
The effects of temporally restricted feeding on hepatic gene expression of Cry1, Cry2 double KO mice
  • organism-icon Mus musculus
  • sample-icon 24 Downloadable Samples
  • Technology Badge Icon Affymetrix Mouse Genome 430 2.0 Array (mouse4302)

Description

Restricted feeding impacts the hepatic circadian clock of WT mice. Cry1, Cry2 double KO mice lack a circadian clock and are thus expected to show rhythmical gene expression in the liver. Imposing a temporally restricted feeding schedule on these mice shows how the hepatic circadian clock and rhythmic food intake regulate rhythmic transcription in parallel

Publication Title

Time of feeding and the intrinsic circadian clock drive rhythms in hepatic gene expression.

Sample Metadata Fields

No sample metadata fields

View Samples
accession-icon SRP093624
C/EBPß deficiency reshapes microglial gene expression
  • organism-icon Mus musculus
  • sample-icon 21 Downloadable Samples
  • Technology Badge IconIllumina Genome Analyzer IIx

Description

CCAAT/enhancer binding protein ß (C/EBPß) is a transcription factor that regulates the expression of important pro-inflammatory genes in microglia. Mice deficient for C/EBPß show protection against excitotoxic and ischemic CNS damage but the involvement of the various C/EBPß expressing cell types in this neuroprotective effect is not solved. Since C/EBPß-deficient microglia show attenuated neurotoxicity in culture we hypothesized that specific C/EBPß deficiency in microglia could be neuroprotective in vivo. In this study we have tested this hypothesis by generating mice with myeloid C/EBPß deficiency. Mice with myeloid C/EBPß deficiency were generated by crossing LysMCre and C/EBPßfl/fl mice . Primary microglial cultures from C/EBPßfl/fl (named here as WT) and LysMCre-C/EBPßfl/fl (named here as KO) mice were treated with lipopolysaccharide ± interferon ? (IFN?) for 6 h and gene expression was analyzed by RNA sequencing. LysMCre-C/EBPßfl/fl mice showed an efficiency of C/EBPß deletion of 100% in cultured microglia. Transcriptomic analysis of C/EBPß-deficient primary microglia revealed C/EBPß-dependent expression of 1068 genes, significantly enriched in inflammatory and innate immune responses GO terms. This study provides new data that support a central role for C/EBPß in the biology of activated microglia. Overall design: LysMCre-C/EBPßfl/fl genotype (12 samples): 4 samples treated with LPS, 4 with LPS +IFNg, and 4 vehicle. C/EBPßfl/fl genotype (9 samples): 3 samples treated with LPS, 3 with LPS +IFNg, and 3 vehicle. Design Case (Treatment LPS or LPS +INF) control (No treatment or vehicle) in LysMCre-C/EBPßfl/fl genotype and in C/EBPßfl/fl genotype

Publication Title

RNA-Seq transcriptomic profiling of primary murine microglia treated with LPS or LPS + IFNγ.

Sample Metadata Fields

No sample metadata fields

View Samples
accession-icon GSE13063
Effects of extensive fasting and subsequent feeding on hepatic transcription
  • organism-icon Mus musculus
  • sample-icon 8 Downloadable Samples
  • Technology Badge Icon Affymetrix Mouse Genome 430 2.0 Array (mouse4302)

Description

Temporally restricted feeding has a profound effect on the circadian clock. Fasting and feeding paradigms are known to influence hepatic transcription. This dataset shows the dynamic effects of refeeding mice after a 24hour fasting period.

Publication Title

Time of feeding and the intrinsic circadian clock drive rhythms in hepatic gene expression.

Sample Metadata Fields

No sample metadata fields

View Samples
accession-icon GSE11923
High-temporal resolution profiling of mouse liver
  • organism-icon Mus musculus
  • sample-icon 48 Downloadable Samples
  • Technology Badge Icon Affymetrix Mouse Genome 430 2.0 Array (mouse4302)

Description

High-temporal resolution profiling was performed on mouse liver to detect rhythmic transcripts

Publication Title

Harmonics of circadian gene transcription in mammals.

Sample Metadata Fields

No sample metadata fields

View Samples
accession-icon GSE11922
High temporal resolution profiling of NIH3T3 cells
  • organism-icon Mus musculus
  • sample-icon 47 Downloadable Samples
  • Technology Badge Icon Affymetrix Mouse Genome 430 2.0 Array (mouse4302)

Description

High-temporal resolution profiling was performed on NIH3T3 fibroblasts to detect rhythmic transcripts

Publication Title

Harmonics of circadian gene transcription in mammals.

Sample Metadata Fields

No sample metadata fields

View Samples
accession-icon GSE19400
S. aureus gene expression following AFN-1252 treatment
  • organism-icon Staphylococcus aureus
  • sample-icon 6 Downloadable Samples
  • Technology Badge Icon Affymetrix S. aureus Genome Array (saureus)

Description

AFN-1252 is an inhibitor of fatty acid biosynthesis. Gene expression profiles were generated by microarray analysis of S. aureus cells following treatment with AFN-1252, an inhibitor of fatty acid synthesis.

Publication Title

Perturbation of Staphylococcus aureus gene expression by the enoyl-acyl carrier protein reductase inhibitor AFN-1252.

Sample Metadata Fields

No sample metadata fields

View Samples
...

refine.bio is a repository of uniformly processed and normalized, ready-to-use transcriptome data from publicly available sources. refine.bio is a project of the Childhood Cancer Data Lab (CCDL)

fund-icon Fund the CCDL

Developed by the Childhood Cancer Data Lab

Powered by Alex's Lemonade Stand Foundation

Cite refine.bio

Casey S. Greene, Dongbo Hu, Richard W. W. Jones, Stephanie Liu, David S. Mejia, Rob Patro, Stephen R. Piccolo, Ariel Rodriguez Romero, Hirak Sarkar, Candace L. Savonen, Jaclyn N. Taroni, William E. Vauclain, Deepashree Venkatesh Prasad, Kurt G. Wheeler. refine.bio: a resource of uniformly processed publicly available gene expression datasets.
URL: https://www.refine.bio

Note that the contributor list is in alphabetical order as we prepare a manuscript for submission.

BSD 3-Clause LicensePrivacyTerms of UseContact