refine.bio
  • Search
      • Normalized Compendia
      • RNA-seq Sample Compendia
  • Docs
  • About
  • My Dataset
github link
Showing
of 70 results
Sort by

Filters

Technology

Platform

accession-icon GSE72320
Gene expression profiling of MDA231 cells with alterations involving beta-oxidation pathway
  • organism-icon Homo sapiens
  • sample-icon 12 Downloadable Samples
  • Technology Badge Icon Affymetrix Human Genome U133 Plus 2.0 Array (hgu133plus2)

Description

In order to confirm the role of fatty acid -oxidation in Src regulation, we performed gene expression analysis in MDA231 cells from in vivo model treated with ETX or knockdown of CPT1 or CPT2 using shRNA. As expected, inhibition of -oxidation showed a gene expression pattern that is opposite to the published Src regulated gene pattern. The known Src up-regulated genes are down-regulated and Src down-regulated genes are up-regulated in -oxidation inhibited cells. Western Blotting further confirmed the gene expression pattern. Knockdown of CPT1 or CPT2 inhibited Src Y416 autophosphorylation as observed with ETX.

Publication Title

Fatty Acid Oxidation-Driven Src Links Mitochondrial Energy Reprogramming and Oncogenic Properties in Triple-Negative Breast Cancer.

Sample Metadata Fields

Cell line

View Samples
accession-icon GSE72319
Gene expression profiling of transmitochondrial cybrids (triple negative breast cancer cells in SUM159 background)
  • organism-icon Homo sapiens
  • sample-icon 6 Downloadable Samples
  • Technology Badge Icon Affymetrix Human Genome U133 Plus 2.0 Array (hgu133plus2)

Description

We used a transmitochondrial cybrid (cybrids)-based discovery approach to identify mitochondria-regulated cancer pathways in TN BCa. Cybrids were generated under a moderately metastatic TN BCa cell line SUM159 as the common nuclear background with mitochondria from benign breast epithelium (A1N4) and moderately metastatic (SUM159) TN BCa cells. In vitro and in vivo studies suggested that even under the common moderately cancerous nuclear background, mitochondria from benign cells inhibit and metastatic cell induce cancer properties of a moderately aggressive TN BCa cell. Gene expression studies identified c-Src onco-pathway as one of the major cancer pathways altered according to the mitochondria status of the cybrids.

Publication Title

Fatty Acid Oxidation-Driven Src Links Mitochondrial Energy Reprogramming and Oncogenic Properties in Triple-Negative Breast Cancer.

Sample Metadata Fields

Specimen part

View Samples
accession-icon GSE39004
Molecular Profiles of Human Breast Cancer and Their Association with Tumor Subtypes and Disease Prognosis
  • organism-icon Homo sapiens
  • sample-icon 28 Downloadable Samples
  • Technology Badge Icon Affymetrix Human Gene 1.0 ST Array (hugene10st)

Description

This SuperSeries is composed of the SubSeries listed below.

Publication Title

MYC-driven accumulation of 2-hydroxyglutarate is associated with breast cancer prognosis.

Sample Metadata Fields

Age, Specimen part, Disease stage, Race

View Samples
accession-icon GSE37751
Molecular Profiles of Human Breast Cancer and Their Association with Tumor Subtypes and Disease Prognosis (Affymetrix)
  • organism-icon Homo sapiens
  • sample-icon 28 Downloadable Samples
  • Technology Badge Icon Affymetrix Human Gene 1.0 ST Array (hugene10st)

Description

This study identified DNA methylation patterns that were associated with tumor subtypes, disease outcome, and distinct metabolome and gene expression patterns.

Publication Title

MYC-driven accumulation of 2-hydroxyglutarate is associated with breast cancer prognosis.

Sample Metadata Fields

Age, Specimen part, Disease stage, Race

View Samples
accession-icon SRP093231
RNA-seq of Tumor-associated Endothelial Cells from Different Immunodeficient Backgrounds
  • organism-icon Mus musculus
  • sample-icon 20 Downloadable Samples
  • Technology Badge IconNextSeq 500

Description

To investigate the impact of CD4+ T cells on tumor vasculature, we performed transcriptome profiling on tumor-associated endothelial cells in mice with or without functional CD4 T cells. In addition to examining four pathways that affect vessel maturation (VEGFA, ANGPT1/ANGPT2, TGFbR, and sphingolipid metabolism), we ran Gene Set Enrichment Analysis (GSEA) and found a down-regulation of cellular adhesion and extracellular matrix assembly-related pathways in the CD4 T cell deficient group. This suggests that CD4+ T cells play an important role in promoting tumor vessel integrity and normalization. Overall design: Transcriptome profiling of E0771 murine tumor-associated endothelial cells isolated from CD4+ T cell competent (CD8KO, Tie2Cre, WT) or deficient mouse strains (CD4KO, Tie2Cre;H2Ab flox and TCRKO) .

Publication Title

Mutual regulation of tumour vessel normalization and immunostimulatory reprogramming.

Sample Metadata Fields

Subject

View Samples
accession-icon GSE68138
An Immune and Inflammation Signature in Prostate Tumors of Smokers
  • organism-icon Mus musculus, Homo sapiens
  • sample-icon 52 Downloadable Samples
  • Technology Badge Icon Affymetrix Mouse Gene 1.0 ST Array (mogene10st), Affymetrix Human Genome U133A 2.0 Array (hgu133a2)

Description

This SuperSeries is composed of the SubSeries listed below.

Publication Title

An Immune-Inflammation Gene Expression Signature in Prostate Tumors of Smokers.

Sample Metadata Fields

Specimen part, Cell line

View Samples
accession-icon GSE68135
An Immune and Inflammation Signature in Prostate Tumors of Smokers (part 1)
  • organism-icon Homo sapiens
  • sample-icon 30 Downloadable Samples
  • Technology Badge Icon Affymetrix Human Genome U133A 2.0 Array (hgu133a2)

Description

Current smokers develop metastatic prostate cancer more frequently than nonsmokers, suggesting that a tobacco-derived factor induces metastasis. To identify smoking-induced alterations in human prostate tumors, we analyzed gene and protein expression of tumors from current, past, and never smokers and observed distinct molecular alterations in current smokers. Specifically, an immune and inflammation signature was identified in prostate tumors of current smokers that was either attenuated or absent in past and never smokers. Key characteristics of this signature included augmented immunoglobulin expression by tumor-infiltrating B cells, NF-kB activation, and increased interleukin-8 in tumor and blood. In an alternate approach to characterize smoking-induced oncogenic alterations, we explored the effects of nicotine in prostate cancer cells and prostate cancer-prone TRAMP mice. These experiments showed that nicotine increases both invasiveness of human prostate cancer cells and metastasis in tumor-bearing TRAMP mice, indicating that nicotine can induce a phenotype that resembles the epidemiology of smoking-associated prostate cancer progression. In summary, we describe distinct oncogenic alterations in prostate tumors from current smokers and show that nicotine can enhance prostate cancer metastasis.

Publication Title

An Immune-Inflammation Gene Expression Signature in Prostate Tumors of Smokers.

Sample Metadata Fields

Specimen part

View Samples
accession-icon GSE68136
An Immune and Inflammation Signature in Prostate Tumors of Smokers (part 2)
  • organism-icon Homo sapiens
  • sample-icon 12 Downloadable Samples
  • Technology Badge Icon Affymetrix Human Genome U133A 2.0 Array (hgu133a2)

Description

Current smokers develop metastatic prostate cancer more frequently than nonsmokers, suggesting that a tobacco-derived factor induces metastasis. To identify smoking-induced alterations in human prostate tumors, we analyzed gene and protein expression of tumors from current, past, and never smokers and observed distinct molecular alterations in current smokers. Specifically, an immune and inflammation signature was identified in prostate tumors of current smokers that was either attenuated or absent in past and never smokers. Key characteristics of this signature included augmented immunoglobulin expression by tumor-infiltrating B cells, NF-kB activation, and increased interleukin-8 in tumor and blood. In an alternate approach to characterize smoking-induced oncogenic alterations, we explored the effects of nicotine in prostate cancer cells and prostate cancer-prone TRAMP mice. These experiments showed that nicotine increases both invasiveness of human prostate cancer cells and metastasis in tumor-bearing TRAMP mice, indicating that nicotine can induce a phenotype that resembles the epidemiology of smoking-associated prostate cancer progression. In summary, we describe distinct oncogenic alterations in prostate tumors from current smokers and show that nicotine can enhance prostate cancer metastasis.

Publication Title

An Immune-Inflammation Gene Expression Signature in Prostate Tumors of Smokers.

Sample Metadata Fields

Cell line

View Samples
accession-icon GSE68137
An Immune and Inflammation Signature in Prostate Tumors of Smokers (part 3)
  • organism-icon Mus musculus
  • sample-icon 10 Downloadable Samples
  • Technology Badge Icon Affymetrix Mouse Gene 1.0 ST Array (mogene10st)

Description

Current smokers develop metastatic prostate cancer more frequently than nonsmokers, suggesting that a tobacco-derived factor induces metastasis. To identify smoking-induced alterations in human prostate tumors, we analyzed gene and protein expression of tumors from current, past, and never smokers and observed distinct molecular alterations in current smokers. Specifically, an immune and inflammation signature was identified in prostate tumors of current smokers that was either attenuated or absent in past and never smokers. Key characteristics of this signature included augmented immunoglobulin expression by tumor-infiltrating B cells, NF-kB activation, and increased interleukin-8 in tumor and blood. In an alternate approach to characterize smoking-induced oncogenic alterations, we explored the effects of nicotine in prostate cancer cells and prostate cancer-prone TRAMP mice. These experiments showed that nicotine increases both invasiveness of human prostate cancer cells and metastasis in tumor-bearing TRAMP mice, indicating that nicotine can induce a phenotype that resembles the epidemiology of smoking-associated prostate cancer progression. In summary, we describe distinct oncogenic alterations in prostate tumors from current smokers and show that nicotine can enhance prostate cancer metastasis.

Publication Title

An Immune-Inflammation Gene Expression Signature in Prostate Tumors of Smokers.

Sample Metadata Fields

Specimen part

View Samples
accession-icon SRP058098
The DAXX co-repressor is directly recruited to active regulatory elements genome-wide to regulate autophagy programs in a model of human prostate cancer (RNA-seq)
  • organism-icon Homo sapiens
  • sample-icon 4 Downloadable Samples
  • Technology Badge IconIlluminaHiSeq2500

Description

This study was aimed at understanding the genome-wide binding and regulatory role of the DAXX transcriptional repressor, recently implicated in PCa. ChIP-Seq analysis of genome-wide distribution of DAXX in PC3 cells revealed over 59,000 DAXX binding sites, found at regulatory enhancers and promoters. ChIP-Seq analysis of DNA methyltransferase 1 (DNMT1), which is a key epigenetic partner for DAXX repression, revealed that DNMT1 binding was restricted to a small number of DAXX sites. DNMT1 and DAXX bound close to transcriptional activator motifs. DNMT1 sites were found to be dependent on DAXX for recruitment by analyzing DNMT1 ChIP-Seq following DAXX knockdown (K/D), corroborating previous findings that DAXX recruits DNMT1 to repress its target genes. Massively parallel RNA sequencing (RNA-Seq) was used to compare the transcriptomes of WT and DAXX K/D PC3 cells. Genes induced by DAXX K/D included those involved in autophagy, and DAXX ChIP-Seq peaks were found close to the transcription start sites (TSS) of autophagy genes, implying they are more likely to be regulated by DAXX. Overall design: Determine changes in gene expression levels between WT and DAXX K/D prostate cancer cells by RNA-Seq (PC3 Cells).

Publication Title

The DAXX co-repressor is directly recruited to active regulatory elements genome-wide to regulate autophagy programs in a model of human prostate cancer.

Sample Metadata Fields

No sample metadata fields

View Samples
...

refine.bio is a repository of uniformly processed and normalized, ready-to-use transcriptome data from publicly available sources. refine.bio is a project of the Childhood Cancer Data Lab (CCDL)

fund-icon Fund the CCDL

Developed by the Childhood Cancer Data Lab

Powered by Alex's Lemonade Stand Foundation

Cite refine.bio

Casey S. Greene, Dongbo Hu, Richard W. W. Jones, Stephanie Liu, David S. Mejia, Rob Patro, Stephen R. Piccolo, Ariel Rodriguez Romero, Hirak Sarkar, Candace L. Savonen, Jaclyn N. Taroni, William E. Vauclain, Deepashree Venkatesh Prasad, Kurt G. Wheeler. refine.bio: a resource of uniformly processed publicly available gene expression datasets.
URL: https://www.refine.bio

Note that the contributor list is in alphabetical order as we prepare a manuscript for submission.

BSD 3-Clause LicensePrivacyTerms of UseContact