Mutations in CCAAT/enhancer binding protein alpha (CEBPA) are seen in 5-14% of acute myeloid leukemia (AML) and have been associated with a favorable clinical outcome. Most AMLs with CEBPA mutations simultaneously carry two mutations (CEBPAdouble-mut), usually biallelic, while single heterozygous mutations (CEBPAsingle-mut) are less frequently seen. Using denaturing high performance liquid chromatography and nucleotide sequencing we identified among a cohort of 598 newly diagnosed AMLs a subset of 41 CEBPA mutant cases, i.e. 28 CEBPAdouble-mut and 13 CEBPAsingle-mut cases. CEBPAdouble-mut associated with a unique gene expression profile as well as favorable overall and event-free survival, retained in multivariable analysis that included cytogenetic risk, FLT3-ITD and NPM1 mutation, white blood cell count and age. In contrast, CEBPAsingle-mut AMLs did not express a discriminating signature and could not be distinguished from wild type cases as regards clinical outcome. These results demonstrate significant underlying heterogeneity within CEBPA mutation positive AML with prognostic relevance.
Double CEBPA mutations, but not single CEBPA mutations, define a subgroup of acute myeloid leukemia with a distinctive gene expression profile that is uniquely associated with a favorable outcome.
Sex, Age, Specimen part, Disease, Disease stage
View SamplesExposure to ultraviolet (UV) irradiation is the major cause of nonmelanoma skin cancer, the most common form of cancer in the United States. UV irradiation has a variety of effects on the skin associated with carcinogenesis, including DNA damage and effects on signal transduction. The alterations in signaling caused by UV regulate inflammation, cell proliferation, and apoptosis. UV also activates the orphan receptor tyrosine kinase and proto-oncogene Erbb2 (HER2/neu). In this study, we demonstrate that the UV-induced activation of Erbb2 regulates the response of the skin to UV. Inhibition or knockdown of Erbb2 before UV irradiation suppressed cell proliferation, cell survival, and inflammation after UV. In addition, Erbb2 was necessary for the UV-induced expression of numerous proinflammatory genes that are regulated by the transcription factors nuclear factor-kappaB and Comp1, including interleukin-1beta, prostaglandin-endoperoxidase synthase 2 (Cyclooxygenase-2), and multiple chemokines. These results reveal the influence of Erbb2 on the UV response and suggest a role for Erbb2 in UV-induced pathologies such as skin cancer.
Erbb2 regulates inflammation and proliferation in the skin after ultraviolet irradiation.
No sample metadata fields
View SamplesHuman dendritic cells were exposed to LPS, in the absence and presence of adenosine receptor 3 inhibitor Overall design: 4 donors, 4 experimental conditions. VUF concentration used was 5 µM, LPS was 500 ng/ml. Exposure times were 6 hours
TLR-Induced IL-12 and CCL2 Production by Myeloid Cells Is Dependent on Adenosine A<sub>3</sub> Receptor-Mediated Signaling.
Specimen part, Subject
View SamplesLeft ventricular myocardium was snap-frozen at time of cardiac transplantation from patients with advanced idiopathic or ischemic cardiomyopathy, or at time of harvest from unused donor heart that serve as a nonfailing control. No subjects received mechanical support devices.
Transcriptional genomics associates FOX transcription factors with human heart failure.
No sample metadata fields
View SamplesThis SuperSeries is composed of the SubSeries listed below.
HDAC4 reduction: a novel therapeutic strategy to target cytoplasmic huntingtin and ameliorate neurodegeneration.
Sex, Age, Specimen part
View SamplesHistone deacetylase (HDAC) 4 is a transcriptional repressor that contains a glutamine rich domain. We hypothesised that it may be involved in the molecular pathogenesis of Huntingtons disease (HD), a protein folding neurodegenerative disorder caused by an aggregation-prone polyglutamine expansion and transcriptional dysregulation. We found that HDAC4 interacts with huntingtin in a polyglutamine-length dependent manner and co-localises with cytoplasmic inclusions. We show that HDAC4 reduction delayed cytoplasmic aggregate formation, restored Bdnf transcript levels and rescued neuronal and cortico-striatal synaptic function in HD mouse models. This was accompanied by an improvement in motor co-ordination, neurological phenotypes and increased lifespan. Surprisingly, HDAC4 reduction had no effect on global transcriptional dysfunction and did not modulate nuclear huntingtin aggregation. Our results define a crucial role for cytoplasmic aggregation in the molecular pathology of HD. HDAC4 reduction presents a novel strategy for targeting huntingtin aggregation which may be amenable to small molecule therapeutics.
HDAC4 reduction: a novel therapeutic strategy to target cytoplasmic huntingtin and ameliorate neurodegeneration.
Sex, Age, Specimen part
View SamplesHistone deacetylase (HDAC) 4 is a transcriptional repressor that contains a glutamine rich domain. We hypothesised that it may be involved in the molecular pathogenesis of Huntingtons disease (HD), a protein folding neurodegenerative disorder caused by an aggregation-prone polyglutamine expansion and transcriptional dysregulation. We found that HDAC4 interacts with huntingtin in a polyglutamine-length dependent manner and co-localises with cytoplasmic inclusions. We show that HDAC4 reduction delayed cytoplasmic aggregate formation, restored Bdnf transcript levels and rescued neuronal and cortico-striatal synaptic function in HD mouse models. This was accompanied by an improvement in motor co-ordination, neurological phenotypes and increased lifespan. Surprisingly, HDAC4 reduction had no effect on global transcriptional dysfunction and did not modulate nuclear huntingtin aggregation. Our results define a crucial role for cytoplasmic aggregation in the molecular pathology of HD. HDAC4 reduction presents a novel strategy for targeting huntingtin aggregation which may be amenable to small molecule therapeutics.
HDAC4 reduction: a novel therapeutic strategy to target cytoplasmic huntingtin and ameliorate neurodegeneration.
Sex, Age, Specimen part
View SamplesEndothelial cell (EC) therapy may promote vascular growth or reendothelization in a variety of disease conditions. However, the production of a cell therapy preparation containing differentiated, dividing cells presenting typical EC phenotype, functional properties and chemokine profile is challenging. We focused on comparative analysis of seven small molecule-mediated differentiation protocols of ECs from human induced pluripotent stem cells. Differentiated cells showed a typical surface antigen pattern of ECs as characterized with flow cytometry analysis, functional properties, such as tube formation and ability to uptake acetylated LDL. Gene expression analysis by RNA sequencing revealed an efficient silencing of pluripotency genes and upregulation of genes related to cellular adhesion during differentiation. In addition, distinct patterns of transcription factor expression were identified during cellular reprogramming providing targets for more effective differentiation protocols in the future. Altogether, our results suggest that the most optimal EC differentiation protocol includes early inhibition of Rho-associated coiled-coil kinase and activation of cyclic adenosine monophosphate signaling, and inhibition of transforming growth factor beta signaling after mesodermal stage. These findings provide the first systematic characterization of the most potent signalling factors and small molecules used to generate ECs from human induced pluripotent stem cells. Consequently, this work improves the existing EC differentiation protocols and opens up new avenues for controlling cell fate for regenerative EC therapy. Overall design: Comparison of the effects of signalling factors and small molecules on endothelial cell differentiation from induced pluripotent stem cells using RNA-Seq. Following small molecules and growth factors were used in different combinations and time courses: 10 uM TGFß-inhibitor SB431542, 10 uM ROCK-inhibitor Y-27632, 20 ng/ml recombinant human BMP-4 and 0,25 mM 8-Br-cAMP. In all groups without TGFß-inhibitor at day 1 in the differentiation, it was added at day 4. In those groups with BMP-4 at day 1, it was removed at day 4. Differentiating ECs were passaged every 4-6 days using Accutase.
Temporal Dynamics of Gene Expression During Endothelial Cell Differentiation From Human iPS Cells: A Comparison Study of Signalling Factors and Small Molecules.
Specimen part, Cell line, Subject
View SamplesMetastasis via the lymphatics is a major risk factor in squamous cell carcinoma of the oral cavity (OSCC). We sought to determine whether the presence of metastasis in the regional lymph node could be predicted by a gene expression signature of the primary tumor. A total of 18 OSCCs were characterized for gene expression by hybridizing RNA to Affymetrix U133A gene chips. Genes with differential expression were identified using a permutation technique and verified by quantitative RT-PCR and immunohistochemistry. A predictive rule was built using a support vector machine, and the accuracy of the rule was evaluated using crossvalidation on the original data set and prediction of an independent set of four patients. Metastatic primary tumors could be differentiated from nonmetastatic primary tumors by a signature gene set of 116 genes. This signature gene set correctly predicted the four independent patients as well as associating five lymph node metastases from the original patient set with the metastatic primary tumor group. We concluded that lymph node metastasis could be predicted by gene expression profiles of primary oral cavity squamous cell carcinomas. The presence of a gene expression signature for lymph node metastasis indicates that clinical testing to assess risk for lymph node metastasis should be possible.
Gene expression signature predicts lymphatic metastasis in squamous cell carcinoma of the oral cavity.
No sample metadata fields
View SamplesAngiotensin II (Ang II)-mediated vascular smooth muscle cells (VSMC) dysfunction plays a critical role in cardiovascular diseases. However, the gene expression in this process is unclear.
Small RNA sequencing reveals microRNAs that modulate angiotensin II effects in vascular smooth muscle cells.
Specimen part, Time
View Samples