refine.bio
  • Search
      • Normalized Compendia
      • RNA-seq Sample Compendia
  • Docs
  • About
  • My Dataset
github link
Showing
of 124 results
Sort by

Filters

Technology

Platform

accession-icon GSE17182
Gene expression profiling of tumor cell lines with constitutively active STAT3
  • organism-icon Mus musculus
  • sample-icon 12 Downloadable Samples
  • Technology Badge IconIllumina mouse-6 v1.1 expression beadchip

Description

The transcription factor STAT3 is constitutively activated in tumors of different origin but the molecular bases for STAT3 addiction of tumor cells have not yet been clearly identified. We generated knock/in mice carrying the constitutively active Stat3 allele, Stat3C, and showed that Stat3C could enhance Neu oncogenic power, triggering the production of earlier onset, more invasive mammary tumors. Tumor-derived cell lines displayed higher migration and invasion and disrupted distribution of cell-cell junction markers. The tensin family member Cten (C-Terminal Tensin-like), known to mediate EGF-induced migration and highly expressed in inflammatory breast cancer, was up-regulated in both Neu;Stat3C cells and tumors. Both Cten expression and enhanced migration were strictly dependent on Stat3, and Cten silencing normalized cell migration and rescued cell-cell contact defects. Importantly, the pro-inflammatory cytokine IL-6 could mediate Cten induction in MCF10 cells, in an exquisitely Stat3-dependent way. This model allowed us to shed some light on the oncogenic role of Stat3 in the breast, suggesting moreover a mechanism through which inflammatory signals can cooperate with EGF receptors in inflammatory breast cancer.

Publication Title

Constitutively active Stat3 enhances neu-mediated migration and metastasis in mammary tumors via upregulation of Cten.

Sample Metadata Fields

No sample metadata fields

View Samples
accession-icon GSE57655
Gene expression profiling of Notch1 knockout mouse liver samples and murine hepatic angiosarcoma cell lines.
  • organism-icon Mus musculus
  • sample-icon 9 Downloadable Samples
  • Technology Badge Icon Affymetrix Mouse Gene 1.0 ST Array (mogene10st)

Description

This work is part of the paper: Generation of a murine hepatic angiosarcoma cell line and reproducible mouse tumor model, Rothweiler S et al, Laboratory Investigation, 2014

Publication Title

Generation of a murine hepatic angiosarcoma cell line and reproducible mouse tumor model.

Sample Metadata Fields

No sample metadata fields

View Samples
accession-icon GSE64041
Gene expression profiling in paired human hepatocellular carcinoma and liver parenchyma biopsies and normal liver biopsies.
  • organism-icon Homo sapiens
  • sample-icon 124 Downloadable Samples
  • Technology Badge Icon Affymetrix Human Gene 1.0 ST Array (hugene10st)

Description

Hepatocellular carcinoma (HCC) is a heterogeneous disease, and despite considerable research efforts, no molecular classification of HCC has been introduced in clinical practice. The existing molecular classification systems were established using resected tumors, which introduces a selection bias towards patients without liver cirrhosis and with early stage HCCs. So far, these classification systems have not been validated in liver biopsy specimens from tumors diagnosed at intermediate and late stages. We generated and analyzed expression profiles from 60 HCC biopsies from an unselected patient population with all tumor stages. Unbiased clustering identified 3 HCC classes. Class membership correlated with survival, tumor size, and with Edmondson and BCLC stage. Most biopsy specimens could be assigned to the classes of published classification systems, demonstrating that gene expression profiles obtained from patients with early stage disease are preserved in all stages of HCC. When a reference set of healthy liver samples was integrated in the analysis, we observed that the differentially regulated genes up- or down-regulated in a given class relative to other classes were actually dysregulated in the same direction in all HCCs, with quantitative rather than qualitative differences between the molecular subclasses. With the exception of a subset of samples with a definitive -catenin gene signature, biological pathway analysis could not identify class specific pathways reflecting the activation of distinct oncogenic programs. Our results suggest that gene expression profiling of HCC biopsies has limited potential to direct therapies that target specific driver pathways, but can identify subgroups of patients with different prognosis.

Publication Title

Gene expression analysis of biopsy samples reveals critical limitations of transcriptome-based molecular classifications of hepatocellular carcinoma.

Sample Metadata Fields

Specimen part, Disease, Disease stage

View Samples
accession-icon GSE86544
Expression profiling of cutaneous squamous cell carcinoma with perineural invasion implicates the p53 pathway in the process
  • organism-icon Homo sapiens
  • sample-icon 24 Downloadable Samples
  • Technology Badge IconIllumina HumanHT-12 V4.0 expression beadchip

Description

Squamous cell carcinoma (SCC) is the second most common cancer worldwide and accounts for approximately 30% of all keratinocyte cancers. The vast majority of cutaneous SCCs of the head and neck (cSCCHN) are readily curable with surgery and/or radiotherapy unless high-risk features are present. Perineural invasion (PNI) is recognized as one of these high-risk features. The molecular changes during clinical PNI in cSCCHN have not been previously investigated. In this study, we assessed the global gene expression differences between cSCCHN with or without incidental or clinical PNI. The results of the analysis showed signatures of gene expression representative of activation of p53 in tumors with PNI compared to tumors without, amongst other alterations. Immunohistochemical staining of p53 showed cSCCHN with clinical PNI to be more likely to exhibit a diffuse over-expression pattern, with no tumors showing normal p53 staining. DNA sequencing of cSCCHN samples with clinical PNI showed no difference in mutation number or position with samples without PNI, however a significant difference was observed in regulators of p53 degradation, stability and activity. Our results therefore suggest that cSCCHN with clinical PNI may be more likely to contain alterations in the p53 pathway, compared to cSCCHN without PNI.

Publication Title

Expression profiling of cutaneous squamous cell carcinoma with perineural invasion implicates the p53 pathway in the process.

Sample Metadata Fields

Disease, Disease stage

View Samples
accession-icon GSE57658
Activating c-KIT mutations confers oncogenic cooperativity and rescue RUNX1-ETO induced DNA-damage in human cells
  • organism-icon Homo sapiens
  • sample-icon 12 Downloadable Samples
  • Technology Badge Icon Affymetrix Human Gene 1.0 ST Array (hugene10st)

Description

REtr causes genomic instability in U937 cells. Activated forms of c-KIT, like c-KIT(N822K), rescues the Retr induced genomic instability by increasing the rate of DNA repair by homologous recombination

Publication Title

Activating c-KIT mutations confer oncogenic cooperativity and rescue RUNX1/ETO-induced DNA damage and apoptosis in human primary CD34+ hematopoietic progenitors.

Sample Metadata Fields

Cell line

View Samples
accession-icon SRP040328
Parallel T-cell cloning and deep sequencing of the transcripts of human MAIT cells reveal stable oligoclonal TCRß repertoire
  • organism-icon Homo sapiens
  • sample-icon 19 Downloadable Samples
  • Technology Badge IconIlluminaHiSeq2000

Description

Mucosal-associated invariant T (MAIT) cells are abundant in humans and recognize conserved bacterial antigens derived from riboflavin precursors, presented by the non-polymorphic MHC class I-like molecule MR1. Here, we show via transcriptomic analysis that human MAIT cells are remarkably oligoclonal in both blood and liver, display high inter-individual homology, and exhibit a restricted length CDR3ß domain of the TCRVß chain. We extend this analysis to a second sub-population of MAIT cells expressing a semi-invariant TCR conserved between individuals. Overall design: Study of CDR3 regions of TCRalpha and beta sequences

Publication Title

Parallel T-cell cloning and deep sequencing of human MAIT cells reveal stable oligoclonal TCRβ repertoire.

Sample Metadata Fields

No sample metadata fields

View Samples
accession-icon GSE52730
Expression data from E12.5 and E14.5 mouse embryonic gonad of wild type (WT) and Wnt-4 knock-out (KO) mice.
  • organism-icon Mus musculus
  • sample-icon 24 Downloadable Samples
  • Technology Badge Icon Affymetrix Murine Genome U74A Version 2 Array (mgu74av2)

Description

This SuperSeries is composed of the SubSeries listed below.

Publication Title

Identification of the genes regulated by Wnt-4, a critical signal for commitment of the ovary.

Sample Metadata Fields

Sex, Specimen part

View Samples
accession-icon GSE51089
Expression data from E12.5 and E14.5 mouse embryonic gonad of wild type (WT) and Wnt-4 knock-out (KO) mice. [Mouse430_2]
  • organism-icon Mus musculus
  • sample-icon 16 Downloadable Samples
  • Technology Badge Icon Affymetrix Murine Genome U74A Version 2 Array (mgu74av2)

Description

Wnt-4 signaling is critical for embryonic female sexual development. When Wnt-4 gene is deleted during embryonic development, the knock-out females present a partial sex reversal.

Publication Title

Identification of the genes regulated by Wnt-4, a critical signal for commitment of the ovary.

Sample Metadata Fields

Specimen part

View Samples
accession-icon GSE52729
Expression data from E12.5 and E14.5 mouse embryonic gonad of wild type (WT) and Wnt-4 knock-out (KO) mice. [MG_U74Av2]
  • organism-icon Mus musculus
  • sample-icon 8 Downloadable Samples
  • Technology Badge Icon Affymetrix Murine Genome U74A Version 2 Array (mgu74av2)

Description

Wnt-4 signaling is critical for embryonic female sexual development. When Wnt-4 gene is deleted during embryonic development, the knock-out females present a partial sex reversal.

Publication Title

Identification of the genes regulated by Wnt-4, a critical signal for commitment of the ovary.

Sample Metadata Fields

Sex, Specimen part

View Samples
accession-icon GSE42389
Pharyngeal mesoderm regulatory network controls cardiac and head muscle morphogenesis
  • organism-icon Mus musculus
  • sample-icon 12 Downloadable Samples
  • Technology Badge Icon Affymetrix Mouse Genome 430A 2.0 Array (mouse430a2)

Description

The search for developmental mechanisms driving vertebrate organogenesis has paved the way toward a deeper understanding of birth defects. During embryogenesis, parts of the heart and craniofacial muscles arise from pharyngeal mesoderm (PM) progenitors. Here, we reveal a hierarchical regulatory network of a set of transcription factors expressed in the PM that initiates heart and craniofacial organogenesis. Genetic perturbation of this network in mice resulted in heart and craniofacial muscle defects, revealing robust cross-regulation between its members. We identified Lhx2 as a novel player during cardiac and pharyngeal muscle development. Lhx2 and Tcf21 genetically interact with Tbx1, the major determinant in the etiology of DiGeorge/velo-cardio-facial/22q11.2 deletion syndrome. Furthermore, knockout of these genes in the mouse recapitulates specific cardiac features of this syndrome. We suggest that PM-derived cardiogenesis and myogenesis are network properties rather than properties specific to individual PM members. These findings shed new light on the developmental underpinnings of congenital defects.

Publication Title

Pharyngeal mesoderm regulatory network controls cardiac and head muscle morphogenesis.

Sample Metadata Fields

Specimen part

View Samples
...

refine.bio is a repository of uniformly processed and normalized, ready-to-use transcriptome data from publicly available sources. refine.bio is a project of the Childhood Cancer Data Lab (CCDL)

fund-icon Fund the CCDL

Developed by the Childhood Cancer Data Lab

Powered by Alex's Lemonade Stand Foundation

Cite refine.bio

Casey S. Greene, Dongbo Hu, Richard W. W. Jones, Stephanie Liu, David S. Mejia, Rob Patro, Stephen R. Piccolo, Ariel Rodriguez Romero, Hirak Sarkar, Candace L. Savonen, Jaclyn N. Taroni, William E. Vauclain, Deepashree Venkatesh Prasad, Kurt G. Wheeler. refine.bio: a resource of uniformly processed publicly available gene expression datasets.
URL: https://www.refine.bio

Note that the contributor list is in alphabetical order as we prepare a manuscript for submission.

BSD 3-Clause LicensePrivacyTerms of UseContact