ALL is the most common form of childhood cancer with >80% cured with contemporary treatment protocols. Accurate risk stratification in childhood ALL is essential to avoid under- and over-treatment. Currently, we use presenting clinical, biological features, and minimal residual disease (MRD) quantitation to risk stratify patients. Although whole genome gene expression profiling (GEP) can accurately classify patients with ALL into various WHO 2008 defined subgroups, its value in predicting relapse remained to be defined. We hypothesized that global time-series GEPs of bone marrow (BM) samples at diagnosis and specific points during initial remission-induction therapy can measure the success of cytoreduction and be used for relapse prediction.
Effective Response Metric: a novel tool to predict relapse in childhood acute lymphoblastic leukaemia using time-series gene expression profiling.
Specimen part, Disease, Subject, Time
View SamplesWe individually examined the ability of human ARGFX, DPRX, LEUTX, and TPRX1 to regulate gene expression by ectopically expressing these proteins in fibroblasts. Overall design: Each gene along with an empty control vector were transfected individually to drive ectopic expression in human dermal fibroblasts, in triplicate.
Evolutionary origin and functional divergence of totipotent cell homeobox genes in eutherian mammals.
Specimen part, Subject
View SamplesThe pathology of chronic obstructive pulmonary disease, idiopathic pulmonary fibrosis and the majority of lung cancers involve the small airway epithelium (SAE), the single continuous layer of cells lining the airways ?6th generations. The basal cells (BC) are the stem/progenitor cells of the SAE, responsible for the differentiation into intermediate cells and ciliated, club and mucous differentiated cells. To facilitate the study of the biology of the human SAE in health and disease, we immortalized and characterized a normal human SAE basal cell line.
Characterization of an immortalized human small airway basal stem/progenitor cell line with airway region-specific differentiation capacity.
Sex, Age, Specimen part, Race
View SamplesThis SuperSeries is composed of the SubSeries listed below.
Transcriptional signatures as a disease-specific and predictive inflammatory biomarker for type 1 diabetes.
No sample metadata fields
View SamplesThe complex milieu of inflammatory mediators associated with many diseases is often too dilute to directly measure in the periphery, necessitating development of more sensitive measurements suitable for mechanistic studies, earlier diagnosis, guiding selection of therapy, and monitoring interventions. Previously, we determined that plasma of recent-onset (RO) Type 1 diabetes (T1D) patients induce a proinflammatory transcriptional signature in fresh peripheral blood mononuclear cells (PBMC) relative to that of unrelated healthy controls (HC). Here, using an optimized cryopreserved PBMC-based protocol, we analyzed larger RO T1D and HC cohorts. In addition, we examined T1D progression by looking at longitudinal, pre-onset and longstanding T1D samples.
Transcriptional signatures as a disease-specific and predictive inflammatory biomarker for type 1 diabetes.
No sample metadata fields
View SamplesThe complex milieu of inflammatory mediators associated with many diseases is often too dilute to directly measure in the periphery, necessitating development of more sensitive measurements suitable for mechanistic studies, earlier diagnosis, guiding selection of therapy, and monitoring interventions. Previously, we determined that plasma of recent-onset (RO) Type 1 diabetes (T1D) patients induce a proinflammatory transcriptional signature in fresh peripheral blood mononuclear cells (PBMC) relative to that of unrelated healthy controls (HC). Here, using an optimized cryopreserved PBMC-based protocol, we compared the signature found between unrelated healthy controls and non-diabetic cystic fibrosis patients possessing Pseudomonas aeruginosa pulmonary tract infection.
Transcriptional signatures as a disease-specific and predictive inflammatory biomarker for type 1 diabetes.
No sample metadata fields
View SamplesThe complex milieu of inflammatory mediators associated with many diseases is often too dilute to directly measure in the periphery, necessitating development of more sensitive measurements suitable for mechanistic studies, earlier diagnosis, guiding selection of therapy, and monitoring interventions. Previously, we determined that plasma of recent-onset (RO) Type 1 diabetes (T1D) patients induce a proinflammatory transcriptional signature in fresh peripheral blood mononuclear cells (PBMC) relative to that of unrelated healthy controls (HC). Here, using an optimized cryopreserved PBMC-based protocol, we compared the signature found between unrelated healthy controls and patients with bacterial pneumonia.
Transcriptional signatures as a disease-specific and predictive inflammatory biomarker for type 1 diabetes.
No sample metadata fields
View SamplesThe complex milieu of inflammatory mediators associated with many diseases is often too dilute to directly measure in the periphery, necessitating development of more sensitive measurements suitable for mechanistic studies, earlier diagnosis, guiding selection of therapy, and monitoring interventions. Previously we determined that plasma of recent-onset (RO) Type 1 diabetes (T1D) patients induce a proinflammatory transcriptional signature in fresh peripheral blood mononuclear cells (PBMC) relative to that of unrelated healthy controls (HC). Here, using an optimized cryopreserved PBMC-based protocol, we compared the signature found in pre H1N1 samples to the signature associated with active H1N1 flu.
Transcriptional signatures as a disease-specific and predictive inflammatory biomarker for type 1 diabetes.
No sample metadata fields
View SamplesBackground: We got interested whether genes of airway basal cells are enriched in COPD.
BAL Cell Gene Expression Is Indicative of Outcome and Airway Basal Cell Involvement in Idiopathic Pulmonary Fibrosis.
Specimen part, Disease
View SamplesBackground: We got interested whether genes of airway basal cells are enriched in sarcoidosis.
BAL Cell Gene Expression Is Indicative of Outcome and Airway Basal Cell Involvement in Idiopathic Pulmonary Fibrosis.
Specimen part, Disease
View Samples