The counterregulatory response to hypoglycemia, which restores normal blood glucose levels to ensure sufficient provision of glucose to the brain, is critical for survival. To discover underlying brain regulatory systems, we performed a genetic screen in recombinant inbred mice for quantitative trait loci (QTL) controlling glucagon secretion in response to neuroglucopenia. We identified a QTL on the distal part of chromosome 7 and combined this genetic information with transcriptomic analysis of hypothalami. This revealed Fgf15 as the strongest candidate to control the glucagon response. Fgf15 was found to be expressed by neurons of the dorsomedial hypothalamus and the perifornical area. Intracerebroventricular injection of FGF19, the human ortholog of Fgf15, reduced activation by neuroglucopenia of dorsal vagal complex neurons and of the parasympathetic nerve, leading to a lower glucagon secretion. These data show that Fgf15 in hypothalamic neurons is a regulator of vagal nerve activity in response to neuroglucopenia. Overall design: 36 BXD strains + 4 parental strains, 1 time point, basal condition without treatment
A Genetic Screen Identifies Hypothalamic Fgf15 as a Regulator of Glucagon Secretion.
Specimen part, Cell line, Subject
View SamplesRNA-seq and expression profile of WT and ZFP57 KO ES cells Overall design: RNA was extracted from both cell lines, PolyA RNA were extracted and RNA-seq was performed
In embryonic stem cells, ZFP57/KAP1 recognize a methylated hexanucleotide to affect chromatin and DNA methylation of imprinting control regions.
Specimen part, Subject
View SamplesThe LH-like molecule chorionic gonadotropin (CG) is secreted by the macaque conceptus during and following implantation, rescuing the CL from impending regression and extending its functional lifespan in early pregnancy for approximately two weeks. CG binds to the same receptor as LH; i.e., LHCGR, and promotes production of steroids and other factors such as relaxin (RLN1). Our research group recently used Affymetrix rhesus macaque total genome arrays to compare the effects of CG on the luteal transcriptome from rhesus females during simulated early pregnancy (SEP) with changes during luteal regression in the non-fecund menstrual cycle. This analysis demonstrated that CG-rescue affected expression levels of 4,500 mRNA transcripts between days 10 and 15 of the luteal phase. Previous analyses indicated that a portion of the transcriptome in the macaque CL of the menstrual cycle was regulated indirectly by LH via the local actions of steroid hormones, including progesterone (P). Therefore, this study was designed to distinguish CG-regulated luteal genes that are dependent versus independent of local steroid (P) action. A protocol of increasing dosages of hCG (SEP) was begun on day 9 of the luteal phase in rhesus females combined with concurrent administration of the 3BHSD inhibitor trilostane (TRL) +/- the synthetic progestin (P) R5020. CL were collected on day 10 (no treatment) of the luteal phase to serve as a baseline comparison (n=8), 1 day of SEP (Day 10+hCG+/-TRL+/-R5020) and 6 days of SEP (Day 15+hCG+/-TRL+/-R5020); n=4/group. In the presence of CG, treatment with TRL reduced serum P levels to less than 1 ng/ ml after 1 day and all of the Day 15+h+TRL-treated females initiated menses before CL collection. The isolated CL were processed for total RNA and hybridized to microarrays. Compared to hCG treatment alone, 50 significantly altered mRNA transcripts were identified on day 10, rising to 95 on day 15 (P<0.05, 2-fold change in gene expression). The mRNA levels for several genes were validated in CL by real-time PCR. RNL1 levels increased with CG-treatment, but were not affected by steroid ablation, similar to previously reported relaxin protein expression. Steroid-sensitive genes included CDH11, IL1RN, INSL3, LDLR, OPA1, SERPINE1, SFRP4, and TNSF13B1; however differential sensitivity was observed and effects of steroid ablation and P replacement varied by day. Expression of some genes (e.g., 3BHSD2, ADAMTS1, ADAMTS5, MMP9, STAR, and VEGFA) previously identified as steroid regulated in the macaque CL during the menstrual cycle were not significantly altered by steroid ablation and P replacement during CG exposure in SEP. These data indicate that the majority of CG-regulated luteal transcripts are differentially expressed independently of local steroid actions. The proportion of steroid sensitive mRNA transcripts in the presence of CG is much smaller than in the presence of LH during the non-fecund cycle. Nevertheless, the steroid-regulated genes in the macaque CL may be essential during early pregnancy, based on the previous report that TRL treatment initiates premature structural regression of the CL during SEP. These data reinforce the concept that the structure, function, and regulation of the rescued CL in early pregnancy is different from the CL of the menstrual cycle.
Effects of steroid ablation and progestin replacement on the transcriptome of the primate corpus luteum during simulated early pregnancy.
Sex, Specimen part
View SamplesWe have investigated the regulation of anchorage-independent growth (AIG) by basic fibroblast growth factor (bFGF) and 12-O-tetradecanoyl phorbol-13-acetate (TPA) in JB6 mouse epidermal cells in the context of wound repair versus carcinogenesis responses. bFGF induces an unusually efficient but reversible AIG response, relative to TPA-induced AIG which is irreversible. Distinct global gene expression profiles are associated with anchorage-independent colonies arising from bFGF-stimulated JB6 cells, relative to colonies arising from fully tumorigenic JB6 cells (RT101), including genes exhibiting reciprocal regulation patterns. Thus, while TPA exposure results in commitment to an irreversible and tumorigenic AIG phenotype, the AIG response to bFGF is reversible with essentially complete restoration of normal cell cycle check point control following removal of bFGF from growth medium. These results are consistent with the physiological role of bFGF in promoting wound healing, and suggest that natural mechanisms exist to reverse transformative cellular phenotypes associated with carcinogenesis.
Cellular dichotomy between anchorage-independent growth responses to bFGF and TPA reflects molecular switch in commitment to carcinogenesis.
No sample metadata fields
View SamplesImplantation is dependent on synchronized interactions between the conceptus and surrounding decidual cells but the involvement of clock genes in this process is not well understood. Circadian oscillations are predicated on transcriptional-translational feedback loops, which balance the activities of the transcriptional activators CLOCK and BMAL1 and repressors encoded by PER and CRY genes. Here we show that loss of PER2 expression silences circadian oscillations in decidualizing human endometrial stromal cells (HESCs). Downregulation was preceded by reduced CLOCK binding to a noncanonical E-box enhancer in the PER2 promoter and occurred between 12 - 24 h after exposure to a deciduogenic stimulus. RNA sequencing revealed that premature inhibition of PER2 by siRNA knockdown leads to a grossly disorganised decidual response. Gene ontology analysis highlighted a preponderance of cell cycle regulators amongst the 1,121 genes perturbed upon PER2 knockdown. Congruently, PER2 inhibition abrogated mitotic expansion of differentiating HESCs by inducing cell cycle block at G2/M. Analysis of mid-luteal endometrial biopsies revealed an inverse correlation between PER2 transcript levels and the number of miscarriages in women suffering reproductive failure. Thus, PER2 synchronizes mitotic expansion of HESCs with a periodic decidual gene expression; uncoupling of these events may cause persistent pregnancy failure. Overall design: Endometrial mRNA profiles of paired control (siRNA-NT) and siRNA-PER2 were generated by deep sequencing, in triplicate using Illumina
The clock protein period 2 synchronizes mitotic expansion and decidual transformation of human endometrial stromal cells.
No sample metadata fields
View SamplesUsing a macrophage cell line, we demonstrate the ability of amorphous silica particles to stimulate inflammatory protein secretion and induce cytotoxicity. Whole genome microarray analysis of early gene expression changes induced by 10nm and 500nm particles showed that the magnitude of change for the majority of genes correlated more tightly with particle surface area than either particle mass or number. Gene expression changes that were size-specific were also identified, however the overall biological processes represented by all gene expression changes were nearly identical, irrespective of particle diameter. Our results suggest that on an equivalent nominal surface area basis, common biological modes of action are expected for nano- and supranano-sized silica particles.
Macrophage responses to silica nanoparticles are highly conserved across particle sizes.
No sample metadata fields
View SamplesTo clarify mineralcorticoid receptor and glucocorticoid receptor-dependent gene networks in decidualizing human endometrial stromal cells.
Induction of 11β-HSD 1 and activation of distinct mineralocorticoid receptor- and glucocorticoid receptor-dependent gene networks in decidualizing human endometrial stromal cells.
Sex, Age, Specimen part, Treatment
View SamplesWe used Arabidopsis full-genome microarrays to characterize plant transcript accumulations in map65-3 and ugt76b1 mutants, 3 days after water treatment and inoculation with the biotrophic oomycete downy mildew pathogen, Hyaloperonospora arabidopsidis (Hpa)
The Arabidopsis microtubule-associated protein MAP65-3 supports infection by filamentous biotrophic pathogens by down-regulating salicylic acid-dependent defenses.
Specimen part, Time
View SamplesBisphenol-A is a widespread endocrine disruptor chemical. In utero or perinatal exposure to bisphenol-A (BPA), leads to impaired glucose metabolism during adulthood. To investigate the consequences of the exposure to bisphenol-A during development in pancreatic beta-cell growth
Maternal Exposure to Bisphenol-A During Pregnancy Increases Pancreatic β-Cell Growth During Early Life in Male Mice Offspring.
Sex, Specimen part
View SamplesPhenotypic changes induced by extracellular vesicles (EVs) have been implicated in the recovery of acute kidney injury (AKI) induced by mesenchymal stromal cells (MSCs). miRNAs are potential candidates for cell reprogramming towards a pro-regenerative phenotype. The aim of the present study was to evaluate whether miRNA de-regulation inhibits the regenerative potential of MSCs and derived-EVs in a model of glycerol-induced AKI in SCID mice. For this purpose, we generated MSCs depleted of Drosha, a critical enzyme of miRNA maturation, to alter miRNA expression within MSCs and EVs. Drosha knock-down MSCs (MSC-Dsh) maintained the phenotype and differentiation capacity. They produced EVs that did not differ from those of wild type cells in quantity, surface molecule expression and internalization within renal tubular epithelial cells. However, EVs derived from MSC-Dsh (EV-Dsh) showed global down-regulation of miRNAs. Whereas, wild type MSCs and derived EVs were able to induce morphological and functional recovery in AKI, MSC-Dsh and EV-Dsh were ineffective. RNA sequencing analysis showed that genes deregulated in the kidney of AKI mice were restored by treatment with MSCs and EVs but not by MSC-Dsh and EV-Dsh. Gene Ontology analysis showed that down-regulated genes in AKI were associated with fatty acid metabolism. The up-regulated genes in AKI were involved in inflammation, ECM-receptor interaction and cell adhesion molecules. These alterations were reverted by treatment with wild type MSCs and EVs, but not by the Drosha counterparts. In conclusion, miRNA depletion in MSCs and EVs significantly reduced their intrinsic regenerative potential in AKI, suggesting a critical role of miRNAs. Overall design: RNA-seq
AKI Recovery Induced by Mesenchymal Stromal Cell-Derived Extracellular Vesicles Carrying MicroRNAs.
No sample metadata fields
View Samples