To establish effective multitargeted KRAS pathway therapy, we analyzed mediators of acquired resistance to chronic momelotinib and MEK inhibitor exposure in A549 cells. Since inhibitor resistance was completely reversible after drug withdrawal for several passages, suggesting epigenetic reprogramming, we investigated whole mRNA expression profiles in A549, momelotinib and selumetinib resistant (MSR)-A549 cells and MSR-A549 cells following drug withdrawal for 10 days. In parallel, we also examined mRNA expression profiles of MSR-A549 cells treated with the BET inhibitor JQ1, to identify specific targets regulated by H3K27 acetylation. Overall design: mRNA profile of MSR-A549 cells with or without JQ1 treatment.
Overcoming Resistance to Dual Innate Immune and MEK Inhibition Downstream of KRAS.
Subject
View SamplesGestational protein restriction is a model for low birth size. We hypothesized that taurine supplementation would protect against changes in newborn liver and muscle caused by a maternal low protein diet.
Gestational protein restriction in mice has pronounced effects on gene expression in newborn offspring's liver and skeletal muscle; protective effect of taurine.
No sample metadata fields
View SamplesGlioblastoma multiforme (GBM), the most common and aggressive primary brain tumor in adults, can be divided into several molecular subtypes including proneural GBM. Most clinical strategies aimed at directly targeting glioma cells in these tumors have failed. A promising alternative is to target stromal cells in the brain microenvironment, such as tumor-associated microglia and macrophages (TAMs). Macrophages are dependent upon colony stimulating factor (CSF)-1 for differentiation and survival; therefore, we used an inhibitor of its receptor, CSF-1R, to target macrophages in a mouse proneural GBM model. CSF-1R inhibition dramatically increased survival in mice and regressed established GBMs. Tumor cell apoptosis was significantly increased, and proliferation and tumor grade markedly decreased. Surprisingly, TAMs were not depleted in tumors treated with the CSF-1R inhibitor. Instead, analysis of gene expression in TAMs isolated from treated tumors revealed a decrease in alternatively activated/ M2 macrophage markers, consistent with impaired tumor-promoting functions. These gene signatures were also associated with better survival specifically in the proneural subtype of patient gliomas. Collectively, these results establish macrophages as valid therapeutic targets in proneural gliomas, and highlight the clinical potential for CSF-1R inhibitors in GBM.
CSF-1R inhibition alters macrophage polarization and blocks glioma progression.
Sex, Specimen part
View SamplesMultiple sclerosis involves an aberrant autoimmune response and progressive failure of remyelination in the central nervous system. Prevention of neural degeneration and subsequent disability requires remyelination through the generation of new oligodendrocytes, but current treatments exclusively target the immune system. Oligodendrocyte progenitor cells are stem cells in the central nervous system and the principal source of myelinating oligodendrocytes. These cells are abundant in demyelinated regions of patients with multiple sclerosis, yet fail to differentiate, thereby representing a cellular target for pharmacological intervention. To discover therapeutic compounds for enhancing myelination from endogenous oligodendrocyte progenitor cells, we screened a library of bioactive small molecules on mouse pluripotent epiblast stem-cell-derived oligodendrocyte progenitor cells. Here we show seven drugs function at nanomolar doses selectively to enhance the generation of mature oligodendrocytes from progenitor cells in vitro. Two drugs, miconazole and clobetasol, are effective in promoting precocious myelination in organotypic cerebellar slice cultures, and in vivo in early postnatal mouse pups. Systemic delivery of each of the two drugs significantly increases the number of new oligodendrocytes and enhances remyelination in a lysolecithin-induced mouse model of focal demyelination. Administering each of the two drugs at the peak of disease in an experimental autoimmune encephalomyelitis mouse model of chronic progressive multiple sclerosis results in striking reversal of disease severity. Immune response assays show that miconazole functions directly as a remyelinating drug with no effect on the immune system, whereas clobetasol is a potent immunosuppressant as well as a remyelinating agent. Mechanistic studies show that miconazole and clobetasol function in oligodendrocyte progenitor cells through mitogen-activated protein kinase and glucocorticoid receptor signalling, respectively. Furthermore, both drugs enhance the generation of human oligodendrocytes from human oligodendrocyte progenitor cells in vitro. Collectively, our results provide a rationale for testing miconazole and clobetasol, or structurally modified derivatives, to enhance remyelination in patients. Overall design: RNA sequencing of oligodendrocyte progenitor cells treated with vehicle, miconazole or clobetasol for 0, 2, 6, or 12 hours. Cells were plated 1.5 hours prior to addition of drug.
Drug-based modulation of endogenous stem cells promotes functional remyelination in vivo.
No sample metadata fields
View SamplesGenes encoding transcription factors function as hubs in gene regulatory networks because they encode DNA-binding proteins, which bind to promoters that carry their binding sites. In the present work we have studied gene regulatory networks defined by genes with transcripts belonging to different mRNA abundance classes in the small intestinal epithelial cell. The focus is the rewiring that occurs in transcription factor hubs in these networks during the differentiation of the small intestinal epithelial cell while it migrates along the crypt-villus axis and during its development from a fetal endodermal cell to a mature adult villus epithelial cell.
Metabolome, transcriptome, and bioinformatic cis-element analyses point to HNF-4 as a central regulator of gene expression during enterocyte differentiation.
No sample metadata fields
View SamplesThis SuperSeries is composed of the SubSeries listed below.
Integrated molecular analysis of Tamoxifen-resistant invasive lobular breast cancer cells identifies MAPK and GRM/mGluR signaling as therapeutic vulnerabilities.
Treatment
View SamplesInvasive lobular breast cancer (ILC) is an understudied malignancy with distinct clinical, pathological, and molecular features that distinguish it from the more common invasive ductal carcinoma (IDC). Mounting evidence suggests that estrogen receptor-alpha positive (ER+) ILC has a poor response to Tamoxifen (TAM), but the mechanistic drivers of this are undefined. In the current work, we comprehensively characterize the SUM44/LCCTam ILC model system through integrated analysis of gene expression, copy number, and mutation, with the goal of identifying actionable alterations relevant to clinical ILC that can be co-targeted along with ER to improve treatment outcomes. We show that TAM has several distinct effects on the transcriptome of LCCTam cells, that this resistant cell model has acquired copy number alterations and mutations that impinge on MAPK and metabotropic glutamate receptor (GRM/mGluR) signaling networks, and that pharmacological inhibition of either improves or restores the growth-inhibitory actions of endocrine therapy.
Integrated molecular analysis of Tamoxifen-resistant invasive lobular breast cancer cells identifies MAPK and GRM/mGluR signaling as therapeutic vulnerabilities.
Treatment
View SamplesExtracellular senile plaques of amyloid beta (Abeta) are a pathological hallmark in brain of patients with Alzheimer`s Disease (AD). Abeta is generated by the amyloidogenic processing of the amyloid precursor protein (APP). Concomitant to Abeta load, AD brain is characterized by an increase in protein level and activity of the angiotensin-converting enzyme (ACE). ACE inhibitors are a widely used class of drugs with established benefits for patients with cardiovascular disease. However, the role of ACE and ACE inhibition in the development of Abeta plaques and the process of AD-related neurodegeneration is not clear since ACE was reported to degrade Abeta. To investigate the effect of ACE inhibition on AD-related pathomechanisms, we used Tg2576 mice with neuron-specific expression of APPSwe as AD model. From 12 months of age, substantial Abeta plaque load accumulates in the hippocampus of Tg2576 mice as a brain region, which is highly vulnerable to AD-related neurodegeneration. The effect of central ACE inhibition was studied by treatment of 12 month-old Tg2576 mice for six months with the brain penetrating ACE inhibitor captopril. At an age of 18 months, hippocampal gene expression profiling was performed of captopril-treated Tg2576 mice relative to untreated 18 month-old Tg2576 controls with high Abeta plaque load. As an additional control, we used 12 month-old Tg2576 mice with low Abeta plaque load. Whole genome microarray gene expression profiling revealed gene expression changes induced by the brain-penetrating ACE inhibitor captopril, which could reflect the neuro-regenerative potential of central ACE inhibition.
ACE inhibition with captopril retards the development of signs of neurodegeneration in an animal model of Alzheimer's disease.
Sex, Age, Specimen part
View SamplesAnalysis of epithelial explants injected with the intracellular domain of Notch (ICD) to block the formation of multi-ciliate and proton secreting cells or with dominant negative human Mastermind (HMM) to induce the formation of ectopic multi-ciliate and proton secreting cells. Results show which genes are up or down-regulated when HMM is compared to ICD.
Specification of ion transport cells in the Xenopus larval skin.
Specimen part, Treatment
View SamplesRNA-seq from a cross between an isofemale line and the reference genotype for the purpose of measuring allele specific expression
Estimates of allele-specific expression in Drosophila with a single genome sequence and RNA-seq data.
Sex, Specimen part, Cell line
View Samples