Analysis of epithelial explants injected with the intracellular domain of Notch (ICD) to block the formation of multi-ciliate and proton secreting cells or with dominant negative human Mastermind (HMM) to induce the formation of ectopic multi-ciliate and proton secreting cells. Results show which genes are up or down-regulated when HMM is compared to ICD.
Specification of ion transport cells in the Xenopus larval skin.
Specimen part, Treatment
View SamplesHomeodomain interacting protein kinase 2 (Hipk2) has previously been implicated in control of several transcription factors involved in embryonic development, apoptosis, cell proliferation and tumour development13. Analysis of gene expression in tissues from genetically heterogeneous mouse or human populations can reveal motifs associated with the structural or functional components of the tissue, and may predict roles for genes of unknown function4,5. Here we have applied this network strategy to uncover a novel role for the Hipk2 gene in the transcriptional system controlling adipogenesis. Both in vitro and in vivo models were used to show that knockdown or loss of Hipk2 specifically inhibits white adipose cell differentiation and tissue development. In addition, loss of Hipk2 leads to induction of pockets of multilocular brown fat-like cells in remaining white adipose depots. These cells express markers of brown and beige fat such as uncoupling protein 1 (Ucp1) and transmembrane protein 26 (Tmem26), and thermogenic genes including PPAR- coactivator 1a (Ppargc1a), and cell death-inducing DFFA-like effector a (Cidea). These changes are accompanied by increased insulin sensitivity in Hipk2 knock-out mice and reduced high fat diet-induced weight gain, highlighting a potential role for this kinase in diseases such as diabetes and obesity. Our study underscores the versatility and power of a readily available tissue, such as skin, for network modelling of systemic transcriptional programs involved in multiple pathways, including lipid metabolism and adipogenesis.
Identification of Hipk2 as an essential regulator of white fat development.
Sex, Age, Specimen part
View SamplesThis SuperSeries is composed of the SubSeries listed below.
Network analysis of skin tumor progression identifies a rewired genetic architecture affecting inflammation and tumor susceptibility.
Sex
View SamplesGene expression in self-renewing epithelial tissues is controlled by cis- and trans-activating regulatory factors that mediate responses to exogenous agents capable of causing tissue damage, infection, inflammation, or tumorigenesis. We used network construction methods to analyze the genetic architecture of gene expression in normal mouse skin in a cross between tumor-susceptible Mus musculus and tumor-resistant Mus spretus. We demonstrate that gene expression motifs representing different constituent cell types within the skin such as hair follicle cells, haematopoietic cells, and melanocytes are under separate genetic control. Motifs associated with inflammation, epidermal barrier function and proliferation are differentially regulated in mice susceptible or resistant to tumor development. The intestinal stem cell marker Lgr5 is identified as a candidate master regulator of hair follicle gene expression, and the Vitamin D receptor (Vdr) links epidermal barrier function, inflammation, and tumor susceptibility.
Genetic architecture of mouse skin inflammation and tumour susceptibility.
No sample metadata fields
View SamplesGermline polymorphisms influence gene expression networks in normal mammalian tissues. Analysis of this genetic architecture can identify single genes and whole pathways that influence to complex traits including inflammation and cancer susceptibility. Changes in the genetic architecture during the development of benign and malignant tumours have not been investigated. Here, we document major changes in germline control of gene expression during skin tumour development as a consequence of cell selection, somatic genetic events, and changes in tumour microenvironment. Immune response genes such as Interleukin 18 and Granzyme E are under germline control in tumours but not in normal skin. Gene expression networks linked to tumour susceptibility and hair follicle stem cell markers in normal skin undergo significant reorganization during tumour progression. Our data highlight opposing roles of Interleukin-1 signaling networks in tumour susceptibility and tumour progression and have implications for the development of chemopreventive strategies to reduce cancer incidence.
Network analysis of skin tumor progression identifies a rewired genetic architecture affecting inflammation and tumor susceptibility.
Sex
View SamplesGermline polymorphisms influence gene expression networks in normal mammalian tissues. Analysis of this genetic architecture can identify single genes and whole pathways that influence to complex traits including inflammation and cancer susceptibility. Changes in the genetic architecture during the development of benign and malignant tumours have not been investigated. Here, we document major changes in germline control of gene expression during skin tumour development as a consequence of cell selection, somatic genetic events, and changes in tumour microenvironment. Immune response genes such as Interleukin 18 and Granzyme E are under germline control in tumours but not in normal skin. Gene expression networks linked to tumour susceptibility and hair follicle stem cell markers in normal skin undergo significant reorganization during tumour progression. Our data highlight opposing roles of Interleukin-1 signaling networks in tumour susceptibility and tumour progression and have implications for the development of chemopreventive strategies to reduce cancer incidence.
Network analysis of skin tumor progression identifies a rewired genetic architecture affecting inflammation and tumor susceptibility.
Sex
View SamplesRetinopathy of prematurity (ROP) is a disorder of the developing retina of preterm infants. ROP can lead to blindness due to abnormal angiogenesis that is the result of suspended vascular development and vaso-obliteration leading to severe retinal stress and hypoxia. We tested the hypothesis that a combined treatment with two human progenitor populations, the CD34+ cells, bone marrow-derived, and the endothelial colony-forming cells (ECFCs) synergistically protected the developing retinal vasculature in a murine model of ROP, the oxygen-induced retinopathy (OIR)., CD34+ cells alone, ECFCs alone, or a combination thereof were injected intravitreally at either P5 or P12 and pups were euthanized at P17. Retinas from OIR mice injected with ECFCs or the combined treatment revealed formation of the deep vascular plexus (DVP) while still in hyperoxia, with normal appearing connections between the superficial vascular plexus (SVP) and the DVP. The combination therapy prevented aberrant retinal neovascularization and was more effective anatomically and functionally at rescuing the ischemia phenotype than either cell type alone. The beneficial effect of the cell combination was the result of their ability to orchestrate an acceleration of vascular development and more rapid ensheathment of pericytes on the developing vessels.
Progenitor cell combination normalizes retinal vascular development in the oxygen-induced retinopathy (OIR) model.
Specimen part, Disease, Disease stage, Treatment
View SamplesGene expression levels in normal tissues can differ substantially between individuals, due to inherited polymorphisms acting in cis or trans. Analysis of this variation across a population of genetically distinct individuals allows us to visualize a network of co-expressed genes under normal homeostatic conditions, and the consequences of perturbation by tissue damage or disease development. Here, we explore gene expression networks in normal adult skin from 470 genetically unique mice, and demonstrate the dependence of the architecture of signaling pathways on skin tissue location (dorsal or tail skin) and perturbation by induction of inflammation or tumorigenesis. Gene networks related to specific cell types, as well as signaling pathways including Sonic Hedgehog (Shh), Wnt, Lgr family stem cell markers, and keratins differed at these tissue sites, suggesting mechanisms for the differential susceptibility of dorsal and tail skin to development of skin diseases and tumorigenesis. The Pten tumor suppressor gene network is extensively rewired in premalignant tumors compared to normal tissue, but this response to perturbation is lost during malignant progression. We present a software package for eQTL network analysis and demonstrate how network analysis of whole tissues provides insights into interactions between cell compartments and signaling molecules.
Gene Expression Architecture of Mouse Dorsal and Tail Skin Reveals Functional Differences in Inflammation and Cancer.
Sex, Age, Specimen part, Treatment
View SamplesGene expression levels in normal tissues can differ substantially between individuals, due to inherited polymorphisms acting in cis or trans. Analysis of this variation across a population of genetically distinct individuals allows us to visualize a network of co-expressed genes under normal homeostatic conditions, and the consequences of perturbation by tissue damage or disease development. Here, we explore gene expression networks in normal adult skin from 470 genetically unique mice, and demonstrate the dependence of the architecture of signaling pathways on skin tissue location (dorsal or tail skin) and perturbation by induction of inflammation or tumorigenesis. Gene networks related to specific cell types, as well as signaling pathways including Sonic Hedgehog (Shh), Wnt, Lgr family stem cell markers, and keratins differed at these tissue sites, suggesting mechanisms for the differential susceptibility of dorsal and tail skin to development of skin diseases and tumorigenesis. The Pten tumor suppressor gene network is extensively rewired in premalignant tumors compared to normal tissue, but this response to perturbation is lost during malignant progression. We present a software package for eQTL network analysis and demonstrate how network analysis of whole tissues provides insights into interactions between cell compartments and signaling molecules.
Gene Expression Architecture of Mouse Dorsal and Tail Skin Reveals Functional Differences in Inflammation and Cancer.
Sex, Specimen part
View SamplesGene expression levels in normal tissues can differ substantially between individuals, due to inherited polymorphisms acting in cis or trans. Analysis of this variation across a population of genetically distinct individuals allows us to visualize a network of co-expressed genes under normal homeostatic conditions, and the consequences of perturbation by tissue damage or disease development. Here, we explore gene expression networks in normal adult skin from 470 genetically unique mice, and demonstrate the dependence of the architecture of signaling pathways on skin tissue location (dorsal or tail skin) and perturbation by induction of inflammation or tumorigenesis. Gene networks related to specific cell types, as well as signaling pathways including Sonic Hedgehog (Shh), Wnt, Lgr family stem cell markers, and keratins differed at these tissue sites, suggesting mechanisms for the differential susceptibility of dorsal and tail skin to development of skin diseases and tumorigenesis. The Pten tumor suppressor gene network is extensively rewired in premalignant tumors compared to normal tissue, but this response to perturbation is lost during malignant progression. We present a software package for eQTL network analysis and demonstrate how network analysis of whole tissues provides insights into interactions between cell compartments and signaling molecules.
Gene Expression Architecture of Mouse Dorsal and Tail Skin Reveals Functional Differences in Inflammation and Cancer.
Sex
View Samples