refine.bio
  • Search
      • Normalized Compendia
      • RNA-seq Sample Compendia
  • Docs
  • About
  • My Dataset
github link
Showing 3 of 3 results
Sort by

Filters

Technology

Platform

accession-icon SRP082988
RNAseq transcriptome analysis reveals developmental heterogeneity among mouse bone marrow monocyte subsets
  • organism-icon Mus musculus
  • sample-icon 12 Downloadable Samples
  • Technology Badge IconIllumina HiSeq 2500

Description

Purpose: In our study, we identified a heterogeneity among bone marrow (BM) Ly6Chi monocytes, which can be subdivided the expression of CXCR4. In order to understand the development of BM monocytes, the goal of this experiment is to compare the transcriptome of these 2 BM Ly6Chi monocyte subsets to those of the common monocyte progenitor (cMoP) and Ly6Clo monocytes. Overall design: 4 BM monocyte subsets (cMoP, Ly6ChiCXCR4hi, Ly6ChiCXCR4lo and Ly6Clo) from 3 different mice were sorted using a BD Aria III. Total RNA was extracted, converted to cDNA and run through deep sequencing using Illumina HiSeq 2500

Publication Title

CXCR4 identifies transitional bone marrow premonocytes that replenish the mature monocyte pool for peripheral responses.

Sample Metadata Fields

Age, Specimen part, Cell line, Subject

View Samples
accession-icon SRP104402
Mapping the human DC lineage through the integration of high dimensional techniques
  • organism-icon Homo sapiens
  • sample-icon 93 Downloadable Samples
  • Technology Badge IconIllumina HiSeq 2000

Description

Dendritic cells (DC) are professional antigen-presenting cells that orchestrate immune responses. The human DC population comprises two main functionally-specialized lineages, whose origins and differentiation pathways remain incompletely defined. Here we combine two high-dimensional technologies — single-cell mRNA sequencing and Cytometry by Time-of-Flight (CyTOF), to identify human blood CD123+CD33+CD45RA+ DC precursors (pre-DC). Pre-DC share surface markers with plasmacytoid DC (pDC) but have distinct functional properties that were previously attributed to pDC. Tracing the differentiation of DC from the bone marrow to the peripheral blood revealed that the pre-DC compartment contains distinct lineage-committed sub-populations including one early uncommitted CD123high pre-DC subset and two CD45RA+CD123low lineage-committed subsets exhibiting functional differences. The discovery of multiple committed pre-DC populations opens promising new avenues for the therapeutic exploitation of DC subset-specific targeting. Overall design: Single cell mRNA sequencing was used to investigate the transcriptomic relationships within the dendritic cell precursors within the peripheral blood.

Publication Title

Mapping the human DC lineage through the integration of high-dimensional techniques.

Sample Metadata Fields

Specimen part, Subject

View Samples
accession-icon SRP104697
Mapping the human DC lineage through the integration of high dimensional techniques
  • organism-icon Homo sapiens
  • sample-icon 2 Downloadable Samples
  • Technology Badge IconIllumina HiSeq 1500

Description

Dendritic cells (DC) are professional antigen-presenting cells that orchestrate immune responses. The human DC population comprises two main functionally-specialized lineages, whose origins and differentiation pathways remain incompletely defined. Here we combine two high-dimensional technologies — single-cell mRNA sequencing and Cytometry by Time-of-Flight (CyTOF), to identify human blood CD123+CD33+CD45RA+ DC precursors (pre-DC). Pre-DC share surface markers with plasmacytoid DC (pDC) but have distinct functional properties that were previously attributed to pDC. Tracing the differentiation of DC from the bone marrow to the peripheral blood revealed that the pre-DC compartment contains distinct lineage-committed sub-populations including one early uncommitted CD123high pre-DC subset and two CD45RA+CD123low lineage-committed subsets exhibiting functional differences. The discovery of multiple committed pre-DC populations opens promising new avenues for the therapeutic exploitation of DC subset-specific targeting. Overall design: single-cell RNA Seq of human dendritic cells

Publication Title

Mapping the human DC lineage through the integration of high-dimensional techniques.

Sample Metadata Fields

Specimen part, Subject

View Samples
Didn't see a related experiment?

refine.bio is a repository of uniformly processed and normalized, ready-to-use transcriptome data from publicly available sources. refine.bio is a project of the Childhood Cancer Data Lab (CCDL)

fund-icon Fund the CCDL

Developed by the Childhood Cancer Data Lab

Powered by Alex's Lemonade Stand Foundation

Cite refine.bio

Casey S. Greene, Dongbo Hu, Richard W. W. Jones, Stephanie Liu, David S. Mejia, Rob Patro, Stephen R. Piccolo, Ariel Rodriguez Romero, Hirak Sarkar, Candace L. Savonen, Jaclyn N. Taroni, William E. Vauclain, Deepashree Venkatesh Prasad, Kurt G. Wheeler. refine.bio: a resource of uniformly processed publicly available gene expression datasets.
URL: https://www.refine.bio

Note that the contributor list is in alphabetical order as we prepare a manuscript for submission.

BSD 3-Clause LicensePrivacyTerms of UseContact