Study of HP1 Knock Down on gene expression and splicing regulation in Human HeLa cells
Histone H3 lysine 9 trimethylation and HP1γ favor inclusion of alternative exons.
Cell line
View SamplesWe have here followed the transcriptional effect of stimulation with the phorbol ester PMA in mouse fibroblasts from HP1gamma null mice recomplemented with either wild-type HP1gamma or an HP1g with an S83A mutation Overall design: Spontaneously immortalized mouse embryonic fibroblasts from HP1gamma null mice were used to stably integrate either an empty expression vector, or expression vectors for either WT or S83A mutant HP1gamma. These cells were then stimulated with PMA for 0 or 60 min. and used for transcriptome analysis by Next Generation sequencing.
Shigella flexneri targets the HP1γ subcode through the phosphothreonine lyase OspF.
No sample metadata fields
View SamplesHuman peroxisome biogenesis disorders are lethal genetic disease in which abnormal peroxisome assembly compromises overall peroxisome and cellular function. Peroxisomes are ubiquitous membrane-bound organelles involved in several important biochemical processes, notably lipid metabolism and the use of reactive oxygen species for detoxification. Using cultured cells, we systematically characterized the peroxisome assembly phenotypes associated with dsRNA-mediated knockdown of 14 predicted Drosophila homologs of PEX genes (encoding peroxins; required for peroxisome assembly and linked to peroxisome biogenesis disorders), and confirmed that at least 13 of them are required for normal peroxisome assembly. We also demonstrate the relevance of Drosophila as a genetic model for the early developmental defects associated with the human peroxisome biogenesis disorders. Mutation of the PEX1 gene is the most common cause of peroxisome biogenesis disorders and is one of the causes of the most severe form of the disease, Zellweger syndrome. Inherited mutations in Drosophila Pex1 correlate with reproducible defects during early development. Notably, Pex1 mutant larvae exhibit abnormalities that are analogous to those exhibited by Zellweger syndrome patients, including developmental delay, poor feeding, severe structural abnormalities in the peripheral and central nervous systems, and early death. Finally, microarray analysis defined clusters of genes whose expression varied significantly between wild-type and mutant larvae, implicating peroxisomal function in neuronal development, innate immunity, lipid and protein metabolism, gamete formation, and meiosis.
A Drosophila model for the Zellweger spectrum of peroxisome biogenesis disorders.
No sample metadata fields
View SamplesCells are constantly exposed to stress. Most of those stresses do not necessarily cause cell death or visible damage. The present study explores the way the immune system responds to such sub lethal stressed cells.
Cells exposed to sublethal oxidative stress selectively attract monocytes/macrophages via scavenger receptors and MyD88-mediated signaling.
Specimen part, Treatment
View SamplesSensorineural hearing loss affects the majority of the elderly population. Mammalian hair cells (HC) do not regenerate and current stem cell and gene delivery protocols result only in immature hair cells like-cells. For this reason, characterization of the transcriptional cascades that lead to development and survival of inner ear HC is essential for designing molecular-based treatments for deafness. We employed a cell type-specific approach to analyze the transcriptomes of the mouse early postnatal auditory and vestibular sensory epithelia and of hair cells derived from zebrafish model. Overall design: Murine auditory and vestibular epithelia were separated into hair-cells (HCs) and epithelial non-sensory cells (ENSCs) by flow cytometry. Gene expression levels were recorded in independent triplicates from the sorted cells using RNA-seq
RFX transcription factors are essential for hearing in mice.
No sample metadata fields
View SamplesSensorineural hearing loss affects the majority of the elderly population. Mammalian hair cells (HC) do not regenerate and current stem cell and gene delivery protocols result only in immature hair cells like-cells. For this reason, characterization of the transcriptional cascades that lead to development and survival of inner ear HC is essential for designing molecular-based treatments for deafness. We employed a cell type-specific approach to analyze the transcriptomes of the mouse early postnatal auditory and vestibular sensory epithelia and of hair cells derived from zebrafish model. Overall design: We utilized the ppv3b:GFP transgenic zebrafish, which express GFP predominantly in HC. We sorted GFP-positive and negative cells from 5 day post fertilization (dpf) larvae using flow cytometry, and profiled their transcriptomes using RNA-seq
RFX transcription factors are essential for hearing in mice.
No sample metadata fields
View SamplesWarfare has long been associated with traumatic brain injury (TBI) in militarized zones. Common forms of TBI can be caused by a physical insult to the head-brain or by the effects of a high velocity blast shock wave generated by the detonation of an explosive device. While both forms of trauma are distinctly different regarding the mechanism of trauma induction, there are striking similarities in the cognitive and emotional status of survivors. Presently, proven effective therapeutics for the treatment of either form of TBI are unavailable. To be able to develop efficacious therapies, studies involving animal models of physical- and blast-TBI are required to identify possible novel or existing medicines that may be of value in the management of clinical events. We examined indices of cognition and anxiety-like behavior and the hippocampal gene transcriptome of mice subjected to both forms of TBI. We identified common behavioral deficits and gene expression regulations, in addition to unique injury-specific forms of gene regulation. Molecular pathways presented a pattern similar to that seen in gene expression. Interestingly, pathways connected to Alzheimers disease displayed a markedly different form of regulation depending on the type of TBI. While these data highlight similarities in behavioral outcomes after trauma, the divergence in hippocampal transcriptome observed between models suggests that, at the molecular level, the TBIs are quite different. These models may provide tools to help define therapeutic approaches for the treatment of physical- and blast-TBIs. Based upon observations of increasing numbers of personnel displaying TBI related emotional and behavioral changes in militarized zones, the development of efficacious therapies will become a national if not a global priority.
Changes in mouse cognition and hippocampal gene expression observed in a mild physical- and blast-traumatic brain injury.
Sex, Specimen part, Treatment, Time
View SamplesThe molecular mechanisms of Trypanosoma cruzi induced cardiac fibrosis remains to be elucidated. Primary human cardiomyoctes (PHCM) exposed to invasive T. cruzi trypomastigotes were used for transcriptome profiling and downstream bioinformatic analysis to determine fibrotic-associated genes regulated early during infection process (0 to 120 minutes). The identification of early molecular host responses to T. cruzi infection can be exploited to delineate important molecular signatures that can be used for the classification of Chagasic patients at risk of developing heart disease. Our results show distinct gene network architecture with multiple gene networks modulated by the parasite with an incline towards progression to a fibrogenic phenotype. Early during infection, T. cruzi significantly upregulated transcription factors including activator protein 1 (AP1) transcription factor network components (including FOSB, FOS and JUNB), early growth response proteins 1 and 3 (EGR1, EGR3), and cytokines/chemokines (IL5, IL6, IL13, CCL11), which have all been implicated in the onset of fibrosis. The changes in our selected genes of interest did not all start at the same time point. The transcriptome microarray data, validated by quantitative Real-Time PCR, was also confirmed by immunoblotting and customized Enzyme Linked Immunosorbent Assays (ELISA) array showing significant increases in the protein expression levels of fibrogenic EGR1, SNAI1 and IL 6. Furthermore, phosphorylated SMAD2/3 which induces a fibrogenic phenotype is also upregulated accompanied by an increased nuclear translocation of JunB. Pathway analysis of the validated genes and phospho-proteins regulated by the parasite provides the very early fibrotic interactome operating when T. cruzi comes in contact with PHCM. The interactome architecture shows that the parasite induces both TGF- dependent and independent fibrotic pathways, providing an early molecular foundation for Chagasic cardiomyopathy. Examining the very early molecular events of T. cruzi cellular infection may provide disease biomarkers which will aid clinicians in patient assessment and identification of patient subpopulation at risk of developing Chagasic cardiomyopathy.
Early Regulation of Profibrotic Genes in Primary Human Cardiac Myocytes by Trypanosoma cruzi.
Specimen part
View SamplesThis SuperSeries is composed of the SubSeries listed below.
Blast traumatic brain injury-induced cognitive deficits are attenuated by preinjury or postinjury treatment with the glucagon-like peptide-1 receptor agonist, exendin-4.
Sex, Specimen part, Treatment, Time
View SamplesBlast traumatic brain injury (B-TBI) affects military and civilian personnel. Presently there are no approved drugs for blast brain injury. Exendin-4, administered subcutaneously, was evaluated as a pre-treatment (48 hours) and post-injury treatment (2 hours) on neurodegeneration, behaviors and gene expressions in a murine open field model of blast injury. B-TBI induced neurodegeneration, changes in cognition and genes expressions linked to dementia disorders. Exendin-4, administered pre- or post-injury ameliorated B-TBI-induced neurodegeneration at 72 hours, memory deficits from days 7-14 and attenuated genes regulated by blast at day 14 post-injury. The present data suggest shared pathological processes between concussive and B-TBI, with endpoints amenable to beneficial therapeutic manipulation by exendin-4. B-TBI-induced dementia-related gene pathways and cognitive deficits in mice somewhat parallel epidemiological studies of Barnes and co-workers who identified a greater risk in US military veterans who experienced diverse TBIs, for dementia in later life.
Blast traumatic brain injury-induced cognitive deficits are attenuated by preinjury or postinjury treatment with the glucagon-like peptide-1 receptor agonist, exendin-4.
Sex, Specimen part
View Samples