Response of JHCO9 and JHOC5 cells to infection with NT (control) lentivirus or one of two knockdown lentiviruses, SPINK1 KD or IL-6 KD.
Targeting an autocrine IL-6-SPINK1 signaling axis to suppress metastatic spread in ovarian clear cell carcinoma.
Specimen part, Cell line
View SamplesResponse of pancreas cancer cells to treatment with recombinant MMP3
Tumor cell-derived MMP3 orchestrates Rac1b and tissue alterations that promote pancreatic adenocarcinoma.
Specimen part, Cell line, Treatment
View SamplesResponse of mouse mammary epithelial cells to treatment with MMP3
ROS-induced epithelial-mesenchymal transition in mammary epithelial cells is mediated by NF-kB-dependent activation of Snail.
Specimen part, Treatment
View SamplesThis SuperSeries is composed of the SubSeries listed below.
Regulation of epithelial-mesenchymal transition in breast cancer cells by cell contact and adhesion.
Specimen part, Cell line
View SamplesResponse of mouse mammary epithelial cells to different cell densities and treatment with MMP3
Regulation of epithelial-mesenchymal transition in breast cancer cells by cell contact and adhesion.
Specimen part, Cell line
View SamplesResponse of mammary epithelial cells to different cell densities
Regulation of epithelial-mesenchymal transition in breast cancer cells by cell contact and adhesion.
Specimen part, Cell line
View SamplesCurrently there is a lack of effective therapies which result in long-term durable response for patients presenting with advanced and metastatic clear cell renal cell carcinoma (ccRCC). This is due in part to a lack of molecular factors which can be targeted pharmacologically. In order to identify novel tumor-specific targets, we performed high throughput gene array analysis screening numerous patient ccRCC tumor tissues across all stages of disease, and compared their gene expression levels to matched normal kidney. Our results identify a number of genes which demonstrate tumor-specific overexpression, and may present as novel targets for therapy.
Neuronal pentraxin 2 supports clear cell renal cell carcinoma by activating the AMPA-selective glutamate receptor-4.
Specimen part
View SamplesMechanical forces are increasingly recognized to regulate morphogenesis, but how this is accomplished in the context of the multiple tissues present within a developing organ remains unclear. Here we use bioengineered “microfluidic chest cavities” to precisely control the mechanical environment of the fetal lung. We show that transmural pressure controls airway branching morphogenesis and regulates the frequency of airway smooth muscle contraction. Next-generation sequencing analysis shows that lungs held at higher pressure are more mature than lungs held at lower pressure. Timelapse imaging reveals that branching events are synchronized across distant locations within the lung, and are preceded by long-duration waves of airway smooth muscle contraction. Higher transmural pressure decreases the interval between systemic smooth muscle contractions and increases the rate of morphogenesis of the airway epithelium. These data reveal that the mechanical properties of the microenvironment instruct crosstalk between tissues to control the rate of development of the embryonic lung. Overall design: (i) embryonic mouse lungs at E12.5 were cultured under low or high pressure for 48 hours prior to RNA extraction or (ii) embryonic mouse lungs were isolated from pregnant mice at E12.5, E13.5 and E14.5 prior to RNA extraction
Microfluidic chest cavities reveal that transmural pressure controls the rate of lung development.
Cell line, Subject
View SamplesEpithelial tumor cells (E) underwent EMT in vivo in FVB/N mice generating mesenchymal tumors. Mesenchymal cell lines (M1-M4) were each derived from a different mouse. This study compares gene expression between these two different tumor types.
Immune-induced epithelial to mesenchymal transition in vivo generates breast cancer stem cells.
No sample metadata fields
View SamplesThe goal of our study is to build an integrated transcriptome landscape model for HER2 positive breast tumors and identify the crucial signaling pathways associated with HER2 tumors. Genomic features include, 685 genes that were differentially expressed only in HER2-positive tumors, 102 genes that were alternatively spliced in a pattern that is unique to HER2-positive tumors, and 303 genes that expressed single nucleotide sequence variants (eSNVs) that were unique to HER2-positive tumors. Network analysis was performed to integrate the genomic features into a transcriptome landscape model that identified 12 highly interconnected cellular processes that appear to be critical to the establishment and maintenance of HER2-positive tumors. We observed that integrin signaling was linked to lapatinib sensitivity in vitro and strongly associated with risk of relapse in the NCCTG N9831 adjuvant trastuzumab clinical trial dataset. Overall design: We analyzed RNA-seq data from a survey panel consisting of 8 benign breast lesions, 8 ER+, 8 triple negative, and 8 HER2-positive primary breast tumors to identify genomic features that were uniquely associated with HER2-positive tumors
An integrated model of the transcriptome of HER2-positive breast cancer.
Specimen part, Subject
View Samples