Pancreas organogenesis is a highly dynamic process where neighbouring tissue interactions lead to dynamic changes in gene regulatory networks that orchestrates endocrine, exocrine and ductal lineage formation. To understand the spatio-temporal regulatory logic we have used the Forkhead transcription factor Foxa2-Venus fusion (FVF) knock-in reporter mouse to separate the FVF+ pancreatic epithelium from the FVF- surrounding mesenchyme and blood vessels to perform a whole genome-wide mRNA expression profiling at embryonic day (E)12.5-15.5. This allowed us to annotate genes and molecular processes differentially regulated in these cell types and compartments of the pancreas to generate a dynamic transcriptional landscape.
The global gene expression profile of the secondary transition during pancreatic development.
Specimen part
View SamplesTo describe normal cardiac and brain development during late first and early second trimester in human fetuses using microarray and pathways analysis and the creation of a corresponding normal database. RNA from recovered tissues was used for transcriptome analysis with Affymetrix 1.0 ST microarray chip. From the amassed data we investigated differences in cardiac and brain development within the 10-18 GA period dividing the sample by GA in three groups: 10-12 (H1), 13-15(H2) and 16-18(H3) weeks. A fold change of 2 or above adjusted for a false discovery rate of 5% was used as initial cut-off to determine differential gene expression for individual genes. Test for enrichment to identify functional groups were carried out using the Gene Ontology (GO) and the Kyoto Encyclopedia of Genes and Genomes (KEGG). Array analysis correctly identified the cardiac specific genes, and transcripts reported to be differentially expressed were confirmed by qRT-PCR.
Metabolic gene profile in early human fetal heart development.
Specimen part
View SamplesBecause most human stroke victims are elderly, studies of experimental stroke in the aged rather than the young rat model may be optimal for identifying clinically relevant cellular responses, as well for pinpointing beneficial interventions.
Transcriptomics of post-stroke angiogenesis in the aged brain.
Sex, Age, Specimen part
View SamplesResponse of JHCO9 and JHOC5 cells to infection with NT (control) lentivirus or one of two knockdown lentiviruses, SPINK1 KD or IL-6 KD.
Targeting an autocrine IL-6-SPINK1 signaling axis to suppress metastatic spread in ovarian clear cell carcinoma.
Specimen part, Cell line
View SamplesCD69 is a transmembrane protein expressed on the surface of activated leukocyte. The ligand for CD69 and the intracellular signaling pathway of this molecule are yet unknown. It is widely used as a marker of activated lymphocyte, but its function in immune system is not known.
CD69 regulates type I IFN-induced tolerogenic signals to mucosal CD4 T cells that attenuate their colitogenic potential.
Specimen part
View SamplesDifferential gene expression between naive and activated CD8+ T cells was assessed using microarray analysis to determine target genes for new positron emission tomography (PET) probe screening, in particular for molecular imaging of lymphoid organs and immune activation.
Molecular imaging of lymphoid organs and immune activation by positron emission tomography with a new [18F]-labeled 2'-deoxycytidine analog.
No sample metadata fields
View SamplesUterine receptivity implies a dialogue between the hormonally primed maternal endometrium and the free-floating blastocyst. Endometrial stromal cells proliferate, avert apoptosis, and undergo decidualization in preparation for implantation; however, the molecular mechanisms that underlie differentiation into the decidual phenotype remain largely undefined. The Notch family of transmembrane receptors transduce extracellular signals responsible for cell survival, cell-to-cell communication, and trans-differentiation, all fundamental processes for decidualization and pregnancy. Using a murine artificial decidualization model, pharmacological inhibition of Notch signaling by gamma-secretase inhibition resulted in significantly decreased deciduoma. Furthermore, a progesterone receptor (PR)-Cre Notch1 bigenic (Notch1d/d) confirmed a Notch1-dependant hypomorphic decidual phenotype.
Notch1 mediates uterine stromal differentiation and is critical for complete decidualization in the mouse.
Sex, Age, Specimen part
View SamplesWe sought to determine whether Ldh activity in SCC tumors is a marker of the cell type from which these cells arise, or a key metabolic activity important for tumor initiation or progression. Here we show that genetic abrogation of Ldh enzyme activity in HFSC-mediated tumorigenesis had no effect on tumor number, time to tumor formation, tumor proliferation, epithelial to mesenchymal transition in tumors, gene expression in tumors, tumor pathology, or the immune response to tumors. Overall design: Examination of mRNA profile of five LDHA knockout mice vs five wild type (WT) mice using Illumina HiSeq2500.
Increased lactate dehydrogenase activity is dispensable in squamous carcinoma cells of origin.
Specimen part, Subject
View SamplesResponse of pancreas cancer cells to treatment with recombinant MMP3
Tumor cell-derived MMP3 orchestrates Rac1b and tissue alterations that promote pancreatic adenocarcinoma.
Specimen part, Cell line, Treatment
View SamplesNumerous genetic variants associated with MEF2C are linked to autism, intellectual disability (ID) and schizophrenia (SCZ) – a heterogeneous collection of neurodevelopmental disorders with unclear pathophysiology. MEF2C is highly expressed in developing cortical excitatory neurons, but its role in their development remains unclear. We show here that conditional embryonic deletion of Mef2c in cortical and hippocampal excitatory neurons (Emx1-lineage) produces a dramatic reduction in cortical network activity in vivo, due in part to a dramatic increase in inhibitory and a decrease in excitatory synaptic transmission. In addition, we find that MEF2C regulates E/I synapse density predominantly as a cell-autonomous, transcriptional repressor. Analysis of differential gene expression in Mef2c mutant cortex identified a significant overlap with numerous synapse- and autism-linked genes, and the Mef2c mutant mice displayed numerous behaviors reminiscent of autism, ID and SCZ, suggesting that perturbing MEF2C function in neocortex can produce autistic- and ID-like behaviors in mice. Overall design: We carried out RNA-sequencing (RNA-seq) of somatosensory cortical tissue from control (Mef2cfl/fl) or Mef2c cKO (Mef2cfl/fl; Emx1-Cre) adult male mice. For the RNA-seq, three indipendent replicates were used for the mouse tissues.
MEF2C regulates cortical inhibitory and excitatory synapses and behaviors relevant to neurodevelopmental disorders.
Sex, Age, Specimen part, Cell line, Subject
View Samples