The unprecedented magnitude of the 2013-2016 Makona Ebola virus (M-EBOV) epidemic likely resulted from multiple epidemiologic factors that set it apart from previous outbreaks. Nonetheless, genetic adaptations that distinguish M-EBOV from previous isolates may also have contributed to the scale of the epidemic. Of particular interest is a M-EBOV glycoprotein (GP) variant, GP-A82V, that was first detected at the inflection point of the 2013-2016 outbreak - when the number of cases increased exponentially - and which completely supplanted the earlier M-EBOV sequence. We found that, as compared with the earlier strain, GP-A82V increased the ability of M-EBOV to fuse with and infect cells of primate origin, including human blood dendritic cells, without altering innate immune signaling in target cells. Residue 82 is located at the NPC1-binding site on M-EBOV GP and the increased infectivity of GP-A82V was restricted to cells from species in which the NPC1 orthologue bears primate-defining residues at the critical interface. We utilized HIV-derived lentiviral vectors pseudotyped with founder and A82V containing M-EBOV GPs to explore the potential that this modification alters how human monocyte-derived dendritic cells (MDDCs) respond to EBOV GP stimulation. Overall design: We generated stocks of lentiviral vector bearing one the following three M-EBOV GPs: founder, A82V, and A82V/T230A. These viral stocks were used to challenge MDDCs from two healthy, anonymous human donors. Stimulated MDDCs were harvested at 1, 2, 4, and 6 hours after viral addition. Gene expression in M-EBOV GP challenged MDDCs was compared to a unstimulated control.
Ebola Virus Glycoprotein with Increased Infectivity Dominated the 2013-2016 Epidemic.
Specimen part, Subject
View SamplesSensory neuron diversity is required for organisms to decipher complex environmental cues. In Drosophila, olfactory environment is detected by 50 different olfactory receptor neuron (ORN) classes that are clustered in combinations within distinct sensilla subtypes. Each sensilla subtype houses stereotypically clustered 1-4 ORN identities that arise through asymmetric divisions from a single multipotent sensory organ precursor (SOP). How each class of SOPs acquires a unique differentiation potential that accounts for ORN diversity is unknown. Previously, we reported a critical component of SOP diversification program, Rotund (Rn), which functions to increase ORN diversity by generating novel developmental trajectories from existing precursors within each independent sensilla type lineages. Here, we show that Rn, along with BarH1/H2, Bric-Ã -brac (Bab), Apterous (Ap) and Dachshund (Dac), constitute a functionally conserved transcription factor (TF) network, previously shown to pattern the segmentation of the leg, that patterns the developing olfactory tissue. Precursors with diverse ORN differentiation potentials are selected from concentric rings defined by unique combinations of these TFs along the proximodistal axis of the developing antennal disc. The combinatorial code that demarcates each precursor field is set up by cross-regulatory interactions among different factors within the network. Modifications of this network lead to predictable changes in the diversity of sensilla subtypes and ORN pools. In light of our data, we propose a molecular map that defines Overall design: Time-course RNAseq across 4 developmental stages, inlcuding flies mutant for rotund gene (rn), heterozygotes and wildtype
Comparative analysis of behavioral and transcriptional variation underlying CO<sub>2</sub> sensory neuron function and development in Drosophila.
Specimen part, Subject
View SamplesZXDC1 augments the expression of various markers of monocyte/macrophage differentiation when over-expressed in the U937 cell line treated with the phorbol ester PMA. Likewise, knockdown of ZXDC1 restricts the induced expression of these markers. We sought to identify specfic gene targets of ZXDC1 during the process of monocyte/macrophage differentiation in U937 by performing gene expression profiling in cells exhibiting reduced expression of ZXDC1 compared to controls.
The zinc finger transcription factor ZXDC activates CCL2 gene expression by opposing BCL6-mediated repression.
Specimen part, Cell line
View SamplesTranscriptome analysis of two Ph+ acute lymphoblastic leukemia cell lines after doxycycline induced silencing of MYB.
Targeting CDK6 and BCL2 Exploits the "MYB Addiction" of Ph<sup>+</sup> Acute Lymphoblastic Leukemia.
Cell line
View SamplesThis SuperSeries is composed of the SubSeries listed below.
Immunodeficiency, autoinflammation and amylopectinosis in humans with inherited HOIL-1 and LUBAC deficiency.
Specimen part, Disease, Disease stage, Subject, Time
View SamplesHOIL-1 deficient disease is a new early onset fatal autosomal recessive human disorder charaterized by chronic auto-inflammation, recurrent invasive bacterial infections and progressive muscular amylopectinosis. We studied the effect of TNF- and IL-1 on transcriptional changes of primary fibroblasts from HOIL-1-, MYD88- and NEMO-deficient patients.
Immunodeficiency, autoinflammation and amylopectinosis in humans with inherited HOIL-1 and LUBAC deficiency.
Disease, Disease stage, Subject, Time
View SamplesHOIL1 deficient disease is a new early onset fatal autosomal recessive human disorder charaterized by chronic auto-inflammation, recurrent invasive bacterial infections and progressive muscular amylopectinosis. We studied the transcriptional profiles of whole blood from one HOIL dificient patient and other auto-inflammatory patients, including CINCA, Muckle-Wells syndrome and MVK deficiency.
Immunodeficiency, autoinflammation and amylopectinosis in humans with inherited HOIL-1 and LUBAC deficiency.
Specimen part
View SamplesHOIL-1 deficient disease is a new early onset fatal autosomal recessive human disorder charaterized by chronic auto-inflammation, recurrent invasive bacterial infections and progressive muscular amylopectinosis. We studied the effect of TNF- and IL-1 on transcriptional changes of PBMCs from HOIL-1- and MYD88-deficient patients.
Immunodeficiency, autoinflammation and amylopectinosis in humans with inherited HOIL-1 and LUBAC deficiency.
Specimen part, Disease, Disease stage, Subject, Time
View SamplesIn the diploid genome, genes come in two copies, which can have different DNA sequence and where one is maternal and one is paternal. In a particular cell, a gene could potentially be expressed from both copies (biallelic expression) or only one (monoallelic). We performed RNA-Sequencing on individual cells, from zygote to the cells of the late blastocyst, and also individual cells from the adult liver. Using first generation crosses between two distantly related mouse strains, CAST/Ei and C57BL/6, we determined the expression separately from the maternal and paternal alleles. We found that half of the genes were expressed by only one allele, randomly so that some cells would express the paternal allele, some the maternal and a few cell both alleles. We also observed the spread of the progressive inactivation of the paternal X chromosome. Overall design: First generation mouse strain crosses were used to study monoallelic expression on the single cell level
Single-cell RNA-seq reveals dynamic, random monoallelic gene expression in mammalian cells.
No sample metadata fields
View SamplesNeural circuits in the medial entorhinal cortex (MEC) encode an animal’s position and orientation in space. Within the MEC spatial representations, including grid and directional firing fields, have a laminar and dorsoventral organization that corresponds to a similar topography of neuronal connectivity and cellular properties. Yet, in part due to the challenges of integrating anatomical data at the resolution of cortical layers and borders, we know little about the molecular components underlying this organization. To address this we develop a new computational pipeline for high-throughput analysis and comparison of in situ hybridization (ISH) images at laminar resolution. We apply this pipeline to ISH data for over 16,000 genes in the Allen Brain Atlas and validate our analysis with RNA sequencing of MEC tissue from adult mice. We find that differential gene expression delineates the borders of the MEC with neighboring brain structures and reveals its laminar and dorsoventral organization. Our analysis identifies ion channel-, cell adhesion- and synapse-related genes as candidates for functional differentiation of MEC layers and for encoding of spatial information at different scales along the dorsoventral axis of the MEC. Our results support the hypothesis that differences in gene expression contribute to functional specialization of superficial layers of the MEC and dorsoventral organization of the scale of spatial representations. Overall design: Examination of dorsal and ventral regions from 4 replicate samples each containing pooled data from 3-4 mice
Laminar and dorsoventral molecular organization of the medial entorhinal cortex revealed by large-scale anatomical analysis of gene expression.
No sample metadata fields
View Samples