Using the ATH1 Affymetrix microarrays consisting of about 23,000 genes, we examined the response of Arabidopsis seedlings to chito-tetramers, chito-octamers and hydrolyzed chitin after 30 min of treatment.
Loss-of-function mutations in chitin responsive genes show increased susceptibility to the powdery mildew pathogen Erysiphe cichoracearum.
No sample metadata fields
View SamplesA LysM Receptor-like Kinase Mediates Chitin Perception and Fungal Resistance in Arabidopsis
A LysM receptor-like kinase plays a critical role in chitin signaling and fungal resistance in Arabidopsis.
No sample metadata fields
View SamplesAlthough a large set of data is available concerning organogenesis in animal models, information remains scarce on human organogenesis. In this work, we performed temporal mapping of human fetal pancreatic organogenesis using cell surface markers. We demonstrate that in the human fetal pancreas at 7 weeks of development, the glycoprotein 2 (GP2) marks a multipotent cell population that will differentiate either into the acinar, ductal and endocrine lineages. Development towards the acinar lineage is paralleled by a substantial increase in GP2 expression. Conversely, a subset of the multipotent GP2+ population undergoes endocrine differentiation by down-regulating GP2 and CD142 and turning on NEUROG3, an early marker of endocrine differentiation. Endocrine maturation will progress by up-regulating SUSD2 and lowering ECAD levels. Finally, we show that in vitro differentiation of pancreatic endocrine cells derived from human pluripotent stem cells mimics key in vivo events. Our work constitutes a powerful approach to more precisely define intermediate cell population during conversion of multipotent progenitors into the 3 main human pancreatic cell types (acinar, ductal and endocrine) in vivo. As such, the data pave the way to extend our understanding of the origin of mature human pancreatic cell types and how such lineage decisions are regulated.
Reconstructing human pancreatic differentiation by mapping specific cell populations during development.
Specimen part
View SamplesWe used whole genome transcriptome as gene discovery to further understand the rules of lineage restriction in the lymphoid compartment
Asynchronous lineage priming determines commitment to T cell and B cell lineages in fetal liver.
No sample metadata fields
View SamplesSalmonella enterica is a Gram-negative bacterium that causes gastroenteritis, bacteremia and typhoid fever in several animal species including humans. Its virulence is greatly dependent on two type III secretion systems (T3SSs), encoded in pathogenicity islands 1 (SPI1) and 2 (SPI2), respectively. These systems translocate proteins called effectors into eukaryotic host cell. Effectors interfere with certain host signal transduction pathways to allow the internalization of pathogens and their survival and proliferation inside vacuoles. SteA is one of the few Salmonella effectors that are substrates of both T3SSs. Nothing is known about the function of this protein inside the host cells. Here, we used gene arrays and bioinformatics analysis to study the genetic response of human epithelial cells to SteA. We found that constitutive synthesis of SteA in epithelial cells leads to induction of genes related to extracellular matrix organization and regulation of cell proliferation and serine/threonine kinase signaling pathways. SteA also represses genes related to immune processes and regulation of purine nucleotide synthesis and pathway-restricted SMAD protein phosphorylation. Consisted with this analysis a cell biology approach revealed that epithelial cells expressing steA show altered cell morphology, reduction of cytotoxicity, cell-cell adhesion and migration capability, and increase in endocytosis.
Global impact of Salmonella type III secretion effector SteA on host cells.
Cell line
View SamplesThe cardiovascular restricted transcription factor CHF1/Hey2 has been previously shown to regulate the smooth muscle response to growth factors. To determine how CHF1/Hey2 affects the smooth muscle response to growth factors, we performed a genomic screen for transcripts that are differentially expressed in wild type and knockout smooth muscle cells after stimulation with platelet derived growth factor.
Transcription factor CHF1/Hey2 regulates the global transcriptional response to platelet-derived growth factor in vascular smooth muscle cells.
No sample metadata fields
View SamplesHSC (Sca+ SP) were isolated from 8-12 week C57B6 mice at various time points after treatment with 5-Fluorouracil. RNA was isolated from 50,000-100,000 FACS sorted cells and subjected to two rounds of T7 based linear amplification using Ambion's Message Amp kit. Two replicates from each time point were analyzed.
Molecular signatures of proliferation and quiescence in hematopoietic stem cells.
No sample metadata fields
View SamplesIn the present study, we have investigated the effect of CpG Oligodeoxynucleotides (CpG-ODN) on the outcome of Plasmodium infection of the mosquito vectors Anopheles stephensi and Anopheles gambiae and on the modulation of mosquito immunity to Plasmodium. Anopheles mosquitoes inoculated with CpG-ODN showed significant reduction of Plasmodium infection rate and intensity. Microarrays were used to profile transcription of fat-body from CpG-ODN-treated mosquitoes. Mosquitoes were dissected 18h after ODN inoculation (immediately before feeding). Batches of 20 to 30 fat bodies (abdomen without midgut, ovaries and malpighian tubule]) were dissected in cold DEPC-treated phosphate-buffered saline (PBS) and processed for RNA preparation. Mosquitoes treated with CpG-ODNs are less susceptible to Plasmodium infection. Transcription profile of fat body indicates that protection was associated with coagulation/wound healing, while melanization appears to be depressed.
CpG-containing oligodeoxynucleotides increases resistance of Anopheles mosquitoes to Plasmodium infection.
Sex, Specimen part, Treatment
View SamplesA c-Src inhibitor blocks estrogen (E2)-induced stress and converts E2 responses from inducing apoptosis to growth stimulation in E2-deprived breast cancer cells. A reprogrammed cell line, MCF-7:PF, results with features of functional estrogen receptor (ER) and over-expression of insulin-like growth factor-1 receptor beta (IGF-1Rß). We addressed the question of whether the selective ER modulator 4-hydroxytamoxifen (4-OHT) could target ER to prevent E2-stimulated growth in MCF-7:PF cells. Selected expression of mRNA was measured through real-time RT-PCR. Global gene expression was analyzed by microarray and RNA-seq analysis. Unexpectedly, both 4-OHT and E2 stimulated cell growth in a concentration-dependent manner. Global gene expression analysis showed a remarkable overlap in genes regulated in the same direction by E2 and 4-OHT. Pathway enrichment analysis of the 280 genes commonly deregulated by 4-OHT and E2 revealed functions mainly related to membrane, cytoplasm, and metabolic processes. Further analysis of 98 up-regulated genes by both 4-OHT and E2 uncovered a significant enrichment in genes associated with membrane remodeling, cytoskeleton reorganization, cytoplasmic adapter proteins, cytoplasm organelles proteins, and related processes. 4-OHT was more potent than E2 to up-regulate some membrane remodeling molecules, such as EHD2, FHL2, HOMER3 and RHOF. In contrast, 4-OHT acted as an antagonist to inhibit expression of the majority of enriched membrane-associated genes in wild-type MCF-7 cells. Long-term selection pressure has changed the cell population responses to 4-OHT. Membrane-associated signaling is critical for 4-OHT-stimulated cell growth in MCF-7:PF cells. This study provides a rationale for the further investigation of targeted therapy for tamoxifen resistant patients. Overall design: Wild-type MCF-7 cells were treated with vehicle control (0.1% ethanol), E2 (10-9 mol/L) and 4-OHT (10-6 mol/L) respectively for 24 hours.
Identification of gene regulation patterns underlying both oestrogen- and tamoxifen-stimulated cell growth through global gene expression profiling in breast cancer cells.
No sample metadata fields
View SamplesThe discovery of fetal mRNA transcripts in maternal circulation holds great promise for noninvasive prenatal diagnosis. To identify potential fetal biomarkers, we studied whole blood and plasma transcripts common to term pregnant women and their newborns but reduced or absent in the postpartum mothers.
Gene expression analysis in pregnant women and their infants identifies unique fetal biomarkers that circulate in maternal blood.
Specimen part
View Samples