Similar to embryo-derived stem cells, application of human induced pluripotent stem cells (iPSCs) is limited by our understanding of lineage specification. Here, we demonstrate the ability to generate progenitors and mature cells of the hematopoietic fate directly from human dermal fibroblasts without establishing pluripotency. POU domain activation of hematopoietic transcription factors by ectopic expression of Oct-4, together with specific cytokine treatment, allowed generation of cells expressing the pan-leukocyte marker CD45. These unique fibroblast-derived cells gave rise to granulocytic, monocytic, megakaryocytic, and
Direct conversion of human fibroblasts to multilineage blood progenitors.
Sex, Specimen part, Time
View SamplesMedulloblastoma (MB) is the most common malignant primary pediatric brain tumor and is currently divided into 4 subtypes based on different genomic alterations, gene expression profiles and response to treatment: WNT, Sonic Hedgehog (SHH), Group 3 and Group 4. The extensive heterogeneity has made it difficult to assess the relevance of genes to malignant progression. For example, expression of the transcription factor, OTX2, is frequently dysregulated in multiple MB variants; however, it's role may be subtype specific. Here, we utilized human embryonic stem cell-derived neural precursors to determine the role of OTX2 in MB tumor progression using gain and loss of function studies.
OTX2 exhibits cell-context-dependent effects on cellular and molecular properties of human embryonic neural precursors and medulloblastoma cells.
Specimen part
View SamplesWe investigated the effects of a single pulse of growth hormone on the transcriptional activation of STAT5 target genes in hypophysectomized male mouse liver. This GEO series is part of a larger study, where we investigated the impact of a single pulse of GH given to hypophysectomized mice on local liver chromatin accessibility [DNase hypersensitive site analysis], transcription rates [hnRNA analysis], and gene expression [quantitative PCR and RNA-Seq] determined 30, 90 or 240 min later. The STAT5-dependent but sex-independent early GH response genes Igf1 and Cish showed rapid, GH pulse-induced increases in chromatin accessibility and gene transcription, reversing the effects of hypophysectomy. Rapid increases in liver chromatin accessibility and transcriptional activity were also induced in hypophysectomized male mice for some (Ces2b, Ugt2b38) but not for other liver STAT5-dependent male-biased genes (Cyp7b1). Moreover, in pituitary-intact male mice, Igf1, Cish, Ces2b and Ugt2b38 all showed remarkable cycles of chromatin opening and closing, and associated cycles of induced gene transcription, which closely followed each endogenous pulse of liver STAT5 activity. Thus, the endogenous rhythms of male plasma GH pulsation dynamically open and then close liver chromatin at discrete, localized regulatory sites in temporal association with transcriptional activation of Igf1, Cish and a subset of STAT5-dependent male-biased genes. Overall design: Liver RNA was isolated from hypophysectomized male mice that were untreated, or were treated with a single pulse of GH and euthanized 30, 90 or 240 minutes later. 8 Individual RNA samples were pooled to make 2 biological replicates per condition for RNA-seq analysis.
Activation of Male Liver Chromatin Accessibility and STAT5-Dependent Gene Transcription by Plasma Growth Hormone Pulses.
Sex, Age, Specimen part, Cell line, Treatment, Subject
View SamplesWe investigated the effects of a single pulse of growth hormone on the transcriptional activation of STAT5 target genes in hypophysectomized male mouse liver. This GEO series is part of a larger study, where we investigated the impact of a single pulse of GH given to hypophysectomized mice on local liver chromatin accessibility [DNase hypersensitive site analysis], transcription rates [hnRNA analysis], and gene expression [quantitative PCR and RNA-Seq] determined 30, 90 or 240 min later. The STAT5-dependent but sex-independent early GH response genes Igf1 and Cish showed rapid, GH pulse-induced increases in chromatin accessibility and gene transcription, reversing the effects of hypophysectomy. Rapid increases in liver chromatin accessibility and transcriptional activity were also induced in hypophysectomized male mice for some (Ces2b, Ugt2b38) but not for other liver STAT5-dependent male-biased genes (Cyp7b1). Moreover, in pituitary-intact male mice, Igf1, Cish, Ces2b and Ugt2b38 all showed remarkable cycles of chromatin opening and closing, and associated cycles of induced gene transcription, which closely followed each endogenous pulse of liver STAT5 activity. Thus, the endogenous rhythms of male plasma GH pulsation dynamically open and then close liver chromatin at discrete, localized regulatory sites in temporal association with transcriptional activation of Igf1, Cish and a subset of STAT5-dependent male-biased genes. Overall design: Liver RNA was isolated from untreated hypophysectomized male mice and from hypophysectomized male mice treated with a single pulse of GH and euthanized 30, 90 or 240 minutes later. 8 Individual RNA samples were pooled to make 2 biological replicates per condition for RNA-seq analysis.
Activation of Male Liver Chromatin Accessibility and STAT5-Dependent Gene Transcription by Plasma Growth Hormone Pulses.
Sex, Age, Specimen part, Cell line, Treatment, Subject
View SamplesZXDC1 augments the expression of various markers of monocyte/macrophage differentiation when over-expressed in the U937 cell line treated with the phorbol ester PMA. Likewise, knockdown of ZXDC1 restricts the induced expression of these markers. We sought to identify specfic gene targets of ZXDC1 during the process of monocyte/macrophage differentiation in U937 by performing gene expression profiling in cells exhibiting reduced expression of ZXDC1 compared to controls.
The zinc finger transcription factor ZXDC activates CCL2 gene expression by opposing BCL6-mediated repression.
Specimen part, Cell line
View SamplesThe type I JAK inhibitor ruxolitinib is approved for therapy of MPN patients but evokes resistance with longer exposure. Several novel type I JAK inhibitors were studied and we show that they uniformly induce resistance via a shared mechanism of JAK family heterodimer formation.Here we studied the expression profiles of SET2 cell lines persistent to several different type I JAK inhibitors in comparison to naive SET2 cells or in comparison to SET2 cells with acute exposure to ruxolitinib. Overall design: Analysis of RNA isolated from several type I JAK inhibitor SET2 cell lines in comparison to naïve SET2 cells
CHZ868, a Type II JAK2 Inhibitor, Reverses Type I JAK Inhibitor Persistence and Demonstrates Efficacy in Myeloproliferative Neoplasms.
No sample metadata fields
View SamplesTriple Negative Breast cancer accounts for some of the most aggressive types of breast cancer. By interrogating clinical datasets, we found that the activities of p63 and Hypoxia-Inducible-Factors (HIFs), two master regulators of the invasive and metastatic cancer cell phenotype are linked in TNBC through the p63-target Sharp1. Mechanistically, Sharp1 promotes HIF-1/HIF-2 proteasomal degradation by serving as HIFs presenting factor to the proteasome independently from oxygen levels and prior ubiquitination.
SHARP1 suppresses breast cancer metastasis by promoting degradation of hypoxia-inducible factors.
No sample metadata fields
View SamplesHIF-1 plays a crucial role in sustaining glioblastoma (GBM) cell growth and the maintenance of their undifferentiated phenotype. However, HIF-1 has been suggested to interplay with Wnt signaling components, thus activating a neuronal differentiation process in both GBM and normal brain. Here, we show that a -catenin/TCF1/HIF-1 complex directly controls the transcription of neuronal differentiation genes in hypoxia. Conversely, at higher oxygen levels, the increased expression of TCF4 exerts a transcriptional inhibitory function on the same genomic regions, thus counteracting differentiation. Moreover, we demonstrate the existence of a positive correlation between HIF-1, TCF1 and neuronal phenotype in GBM tumors, accompanied by the over-expression of several Wnt signaling components, finally impacting on patient prognosis. In conclusion, we unveil a mechanism by which TCF1 and HIF-1 induce a reminiscent neuronal differentiation of hypoxic GBM cells, which is hampered, in normoxia, by high levels of TCF4, thus de facto sustaining cell aggressiveness.
HIF-1α/Wnt signaling-dependent control of gene transcription regulates neuronal differentiation of glioblastoma stem cells.
Specimen part
View SamplesAE9aId1fl/flCreER cells treated with the control vehicle, CBD or 4-OHT Overall design: We treated AE9aId1fl/flCreER leukemia with 0.1 µM 4-hydroxytamoxifen (4-OHT) for 48 hours or the Id1 inhibitor CBD (at 15 µM) for 16 hours, and isolated RNA for RNA-seq analysis.
Regulation of AKT signaling by Id1 controls t(8;21) leukemia initiation and progression.
No sample metadata fields
View SamplesIn the diploid genome, genes come in two copies, which can have different DNA sequence and where one is maternal and one is paternal. In a particular cell, a gene could potentially be expressed from both copies (biallelic expression) or only one (monoallelic). We performed RNA-Sequencing on individual cells, from zygote to the cells of the late blastocyst, and also individual cells from the adult liver. Using first generation crosses between two distantly related mouse strains, CAST/Ei and C57BL/6, we determined the expression separately from the maternal and paternal alleles. We found that half of the genes were expressed by only one allele, randomly so that some cells would express the paternal allele, some the maternal and a few cell both alleles. We also observed the spread of the progressive inactivation of the paternal X chromosome. Overall design: First generation mouse strain crosses were used to study monoallelic expression on the single cell level
Single-cell RNA-seq reveals dynamic, random monoallelic gene expression in mammalian cells.
No sample metadata fields
View Samples