To investigate the molecular bases of diet induced differences in milk composition, we collected milk from mid lactation dairy ewes and after 3 weeks of diet supplementation with extruded linseed. RNAs were isolated from milk somatic cells isolated from milk of 3 sheep and Illumina RNA sequencing was performed to analyze RNA synthesis in these cells. Overall design: Transcriptional profiling of milk somatic cells of sheep fed with normal diet and with a supplementation with extruded linseed. Sequence data were generated by deep sequencing, on three replicates, using Illumina HiSeq2000.
Transcript profiling in the milk of dairy ewes fed extruded linseed.
Specimen part, Subject
View SamplesIn this study we performed a genome wide analysis of the entire complement of mRNAs in clear cell renal cell carcinomas (ccRCC) by means of the Affymetrix Exon Array platform. The analyses were performed both at gene and exon level.
Genome-wide analysis of differentially expressed genes and splicing isoforms in clear cell renal cell carcinoma.
Sex, Age, Specimen part, Subject
View SamplesBACKGROUND: Mammalian microRNAs (miR) regulate the expression of genes relevant for the development of adaptive and innate immunity against cancer. Since T cell dysfunction has previously been reported in patients with renal cell carcinoma (RCC; clear cell type), we aimed to analyse these immune cells for genetic and protein differences when compared to normal donor T cells freshly after isolation and 35 days after in vitro stimulation (IVS) with HLA-matched RCC tumor cells.
miR-29b and miR-198 overexpression in CD8+ T cells of renal cell carcinoma patients down-modulates JAK3 and MCL-1 leading to immune dysfunction.
Sex, Age, Specimen part, Disease, Subject, Time
View SamplesAberrant forms of the SWI/SNF chromatin remodeling complex are associated with human disease. Loss of the Snf5 subunit of SWI/SNF is a driver mutation in pediatric rhabdoid cancers and forms aberrant sub-complexes that are not well characterized. We determined the effects of loss of Snf5 on the composition, nucleosome binding, recruitment and remodeling activities of yeast SWI/SNF. The Snf5 subunit interacts with the ATPase domain of Snf2 and forms a submodule consisting of Snf5, Swp82 and Taf14 as shown by mapping SWI/SNF subunit interactions by crosslinking-mass spectrometry and subunit deletion followed by immunoaffinity chromatography. Snf5 promoted binding of the Snf2 ATPase domain to nucleosomal DNA, enhanced its catalytic activity and facilitated nucleosome remodeling. Snf5 was required for acidic transcription factors to recruit SWI/SNF to chromatin. RNA-seq analysis suggested that both the recruitment and catalytic functions mediated by Snf5 are required for SWI/SNF regulation of gene expression. Overall design: Determining the effects of loss of Snf5 on the composition, nucleosome binding, recruitment, remodeling activities and gene expression profile of yeast SWI/SNF
Loss of Snf5 Induces Formation of an Aberrant SWI/SNF Complex.
Cell line, Subject
View SamplesHow the parental genomes of the very specialized sperm and oocyte cells are remodelled upon fertilization to confer totipotency has remained a tantalizing open questions. Indeed, in the case of mammals, the parental genomes undergo dramatic reprogramming upon fertilization, including differential dynamics of histone post-translational modifications. The roles of histone modifying enzymes in this process, which are maternally provided, are only just starting to emerge. Here, we explore the function of the oocyte inherited pool of Lsd1/Kdm1a, which encodes a histone H3K4 and K9 demethylase, during early mouse development. Maternal deficiency of Lsd1/Kdm1a results in developmental arrest by the two-cell stage, associated with dramatic and stepwise alterations in H3K9 and H3K4 methylation patterns depending on its demethylase activity. At the transcriptional level, two major changes occur. On one hand, switch from maternal-to-zygotic program fails to be induced. On the other hand, LINE-1 retrotransposons are not properly silenced, along with evidences for increased LINE-1 activity. We propose that Lsd1/Kdm1a is involved in the correct establishment of epigenetic information harboured by histones and is involved in the initiation of new pattern of genome expression driving early mouse development and preserving genome integrity Overall design: RNA-seq of invidual mouse two-cell stage embryos
Maternal LSD1/KDM1A is an essential regulator of chromatin and transcription landscapes during zygotic genome activation.
No sample metadata fields
View SamplesHow the parental genomes of the very specialized sperm and oocyte cells are remodelled upon fertilization to confer totipotency has remained a tantalizing open questions. Indeed, in the case of mammals, the parental genomes undergo dramatic reprogramming upon fertilization, including differential dynamics of histone post-translational modifications. The roles of histone modifying enzymes in this process, which are maternally provided, are only just starting to emerge. Here, we explore the function of the oocyte inherited pool of Lsd1/Kdm1a, which encodes a histone H3K4 and K9 demethylase, during early mouse development. Maternal deficiency of Lsd1/Kdm1a results in developmental arrest by the two-cell stage, associated with dramatic and stepwise alterations in H3K9 and H3K4 methylation patterns depending on its demethylase activity. At the transcriptional level, two major changes occur. On one hand, switch from maternal-to-zygotic program fails to be induced. On the other hand, LINE-1 retrotransposons are not properly silenced, along with evidences for increased LINE-1 activity. We propose that Lsd1/Kdm1a is involved in the correct establishment of epigenetic information harboured by histones and is involved in the initiation of new pattern of genome expression driving early mouse development and preserving genome integrity Overall design: RNA-seq of invidual mouse oocytes
Maternal LSD1/KDM1A is an essential regulator of chromatin and transcription landscapes during zygotic genome activation.
Cell line, Subject
View SamplesThis study focused on transcription in the medial PFC (mPFC) as a function of age and cognition. Young and aged F344 rats were characterized on tasks, attentional set shift and spatial memory, which depend on the mPFC and hippocampus, respectively. Differences in transcription associated with age and cognitive function were examined using RNA sequencing to construct transcriptomic profiles for the mPFC, white matter, and region CA1 of the hippocampus. The results indicate regional differences in vulnerability to aging associated with increased expression of immune and defense response genes and a decline in synaptic and neural activity genes. Importantly, we provide evidence for region specific transcription related to behavior. In particular, expression of transcriptional regulators and neural activity-related immediate-early genes (IEGs) are increased in the mPFC of aged animals that exhibit delayed set shift behavior; relative to age-matched animals that exhibit set shift behavior similar to younger animals. Overall design: The study contains 11 young and 20 aged rats for the mPFC and CA1 samples, which were used to investigate expression patterns associated with aging and behavior. White matter samples were used to investigate an age-related effect with 8 young and 9 aged rats.
Transcription Profile of Aging and Cognition-Related Genes in the Medial Prefrontal Cortex.
No sample metadata fields
View SamplesLong non-coding RNAs (lncRNAs) are a diverse category of transcripts with poor conservation and have expanded greatly in primates, particularly in their brain. We identified a lncRNA, which has acquired 16 microRNA response elements (MREs) for miR-143-3p in the Catarrhini branch of primates. This lncRNA termed LncND (neuro-development) gets expressed in neural progenitor cells and then declines in mature neurons. Binding and release of miR-143-3p, by LncND, can control the expression of Notch. Its expression is highest in radial glia cells in the ventricular and outer subventricular zones of human fetal brain. Down-regulation of LncND in neuroblastoma cells reduced cell proliferation and induced neuronal differentiation, an effect phenocopied by miR-143-3p over-expression and supported by RNA-seq analysis. These findings support a role for LncND in miRNA-mediated regulation of Notch signaling in the expansion of the neural progenitor pool of primates and hence contributing to the rapid growth of the cerebral cortex. Overall design: Cerebral organoids were generated as in Lancaster et al. (Lancaster and Knoblich, 2014). Organoids were dissociated into single cells and captured on C1 Single-Cell Auto Prep Integrated Fluidic Circuit (IFC) (Fluidigm). The RNA extraction and amplification was performed on the chip as described by the manufacturer. We captured 68 single-cells on a C1 Single-Cell Auto Prep System (Fluidigm) and sequenced the RNA on a NextSeq500 System (Illumina) (Pollen et al., 2014). Out of 68 cells, we obtained 60 high quality cells.
A Primate lncRNA Mediates Notch Signaling during Neuronal Development by Sequestering miRNA.
No sample metadata fields
View SamplesLong non-coding RNAs (lncRNAs) are a diverse category of transcripts with poor conservation and have expanded greatly in primates, particularly in their brain. We identified a lncRNA, which has acquired 16 microRNA response elements (MREs) for miR-143-3p in the Catarrhini branch of primates. This lncRNA termed LncND (neuro-development) gets expressed in neural progenitor cells and then declines in mature neurons. Binding and release of miR-143-3p, by LncND, can control the expression of Notch. Its expression is highest in radial glia cells in the ventricular and outer subventricular zones of human fetal brain. Down-regulation of LncND in neuroblastoma cells reduced cell proliferation and induced neuronal differentiation, an effect phenocopied by miR-143-3p over-expression and supported by RNA-seq analysis. These findings support a role for LncND in miRNA-mediated regulation of Notch signaling in the expansion of the neural progenitor pool of primates and hence contributing to the rapid growth of the cerebral cortex. Overall design: SHSY5Y cells treated either with miR-143-3p mimic or 100 nM of siRNA specific for LncND were sequenced on NextSeq500 platform. Scrambled siRNA or miRNA sequences were used as a negative control.
A Primate lncRNA Mediates Notch Signaling during Neuronal Development by Sequestering miRNA.
No sample metadata fields
View SamplesTranscriptomic profiling of miR-132/212-deficient and WT CD4 T cells isolated from spleens of L donovani infected mice (d28) to determine the effects of miR-132/212 on CD4 T cell activation in vivo. This was combined by transcriptomic analysis of early stage in vitro activated WT and miR-132/212-deficient CD4 T cells to identify direct miR-132/212 targets in CD4 T cells. Overall design: Examination of expression profiles of splenic CD4+ T cells from L. donovani-infected WT (samples 1-4) and miR-132/212-/- mice (samples 5-9) using RNASeq. This was followed by similar RNASeq in naïve CD4+ T-cells in WT and miR-132/212 -/- mice prior to and following 18h of in vitro TCR stimulation under Th1 conditions (samples 10-25).
<i>Malat1</i> Suppresses Immunity to Infection through Promoting Expression of Maf and IL-10 in Th Cells.
Specimen part, Cell line, Subject
View Samples