We investigated an acute kidney injury (AKI) model in rats induced by cisplatin (Cp) administration. The cisplatin is widely used since its biochemical and histopathological characteristics are representative of drug-induced AKI in humans. Male Wistar rats were dosed once ip with 0, 1 and 3 mg/kg cisplatin. Tubular necorsis was observed histopathologically in all treated rats and war recovery on day 26. Gene expression profiling of the kidney cortex with microarrays 3, 5, 8, and 26 days after single administration of 3mg/kg Cp revealed a major profile pattern characterized by maximally increased and decreased mRNA levels on day 8, with clear changes already found 3 days after treatment for about half of the mRNAs. The mRNA expression pattern after administration of 1mg/kg Cp was overall similar, yet with a dose-dependent smaller fold-change. In summary we found 274 mRNAs showing significantly altered levels in the kidney of which 162 were increased and 112 decreased, respectively. Functional interpretation of the proteins encoded by these mRNAs revealed induction of a DNA damage response likely caused by the known molecular activity of Cp as DNA alkylating agent. Increased mRNAs associated with apoptosis (encoded by the corresponding genes like B-cell lymphoma 3-encoded protein, Bcl3; mouse double minute 2 homolog, Mdm2; p21/WAF1 also known as cyclin-dependent kinase inhibitor 1), cell cycle regulation (encoded by the corresponding genes like Cyclin-G1, Ccng1; B-cell translocation gene 2, Btg2) and stress response may have partly been induced by the DNA damage, but also by the kidney damage associated with Cp administration. Increased levels of mRNAs indicating regeneration (encoded by the corresponding genes like SPARC- related modular calcium-binding protein 2, Smoc2; Tenascin C, Tnc) and decreased levels of mRNAs coding for proteins related to kidney function, indicating dedifferentiation, are likely related to the observed kidney injury.
Comparison of the MesoScale Discovery and Luminex multiplex platforms for measurement of urinary biomarkers in a cisplatin rat kidney injury model.
Sex, Specimen part
View SamplesThis SuperSeries is composed of the SubSeries listed below.
Cell competition is a tumour suppressor mechanism in the thymus.
Specimen part
View SamplesWe analyzed the transcriptional signatures of mouse bone marrow-derived macrophages (BMDM) at different times after infection with promastigotes of the protozoan parasite Leishmania major.
Transcriptomic signature of Leishmania infected mice macrophages: a metabolic point of view.
Specimen part
View SamplesLeukemia cells are considered developmentally 'frozen', and their phenotype is thought to reflect their stage of origin. To gain insights into the cell population from which T-ALL arises, we compared by global gene expression profiling T-ALL samples (n = 10) to different stages of T cell development, following the order from early thymic progenitor (ETP), to triple negative (TN) TN2, to TN3, to TN4, to immature single positive (ISP), to double positive (DP) thymocytes.
Cell competition is a tumour suppressor mechanism in the thymus.
Specimen part
View SamplesWild type thymi were transplanted into a competitive (wild type hosts), or non-competitive (Rag2-/-c-/-KitW/Wv hosts) environment. Triple negative 2 and 3 (TN2/3) stages were sorted 14 days afetr transplantation and separated for cells of host or donor origin.
Cell competition is a tumour suppressor mechanism in the thymus.
Specimen part
View SamplesTranscriptome was assessed in the transitions from the normal thymus (with regular progenitor turnover), to a thymus devoid of extrinsic progenitor competition for 10 weeks, to fully malignant T cell acute lymphoblastic leukemia (T-ALL).
Cell competition is a tumour suppressor mechanism in the thymus.
Specimen part
View SamplesTo assess natural variation of downstream auxin responses we subjected 7 different arabidopsis ecotypes to a time course of auxin treatments. 7d-old seedlings grown in liquid culture have been treated for 0, 30 min, 1h and 3h with 1 M IAA.
Natural variation of transcriptional auxin response networks in Arabidopsis thaliana.
Specimen part
View SamplesVascular smooth muscle cells (VSMC) are important for contraction, blood flow distribution and regulation of blood vessel diameter, but to what extent they contribute to the integrity of blood vessels and blood-brain barrier function is less well understood. In this report, we explored the impact of the progressive loss of VSMC in the Notch3-/- mouse on blood vessel integrity in the central nervous system
Notch3 is necessary for blood vessel integrity in the central nervous system.
Age, Specimen part
View SamplesTo gain insight into the changes in gene expression pattern upon Ebola infection, CD45+/+ (100% protein level) and CD45+/- (62% protein level) mice were challenged with mouse adapted Ebola virus. At time-points day 0, 1, 3, 5, 7, 9, 11 and 13, spleen tissue was harvested and splenocytes isolated. Total RNA was isolated for mRNA expression analysis. The mouse genome 430 2.0 array (Affymetrix, Inc.), which consists of over 39,000 genes in a single array, was used. Based on gene expression patterns, the variable genes were grouped into sixteen clusters. Each cluster contained genes associated with cellular immune processes, signaling, cell-cycle, complement coagulation cascade, biosynthesis/metabolism, ubiquitous genes involved in several cascades, and genes of unknown function. Interestingly, gene expression in clusters 2 and 3 were significantly downregulated by day 1 following EBOV challenge in CD45100% mice. In contrast, at day 1 following EBOV infection, the CD45 62% mice maintained gene expression patterns similar to day 0. The differences in gene expression patterns between the CD45 100% and CD45 62% splenocytes were less apparent at day 3 following infection and by days 5 and 7 they became very similar. At day 9, when wild-type mice had succumbed to the disease, the pattern in CD45 62% mice remained similar to the day 7 patterns of CD45 100% and CD45 62% mice. The pattern at days 11 and 13 in the CD45 62% mice had returned to that of day 0 CD45 100% or CD45 62% mice. These results suggested that in CD45 100% mice, subversion of the cell transcriptional machinery during the early stages of EBOV infection (day 1) might represent a major factor leading to death of the mice. In CD45 62% mice, early control of gene regulation likely provided the appropriate antiviral responses leading to regulated inflammation, immune co-stimulation, and survival.
Reduced levels of protein tyrosine phosphatase CD45 protect mice from the lethal effects of Ebola virus infection.
Specimen part
View SamplesPurpose:To take a comprehensive effort in characterizing the brain vasculature gene expression upon hyperglycemia. Methods: We extracted mRNA from brain microvasculature fragments isolated from a genetic mouse model of hyperglycemia (Ins2-AKITA) and WT mice and analyzed their transcriptome with RNA sequencing The samples were sequenced on an Illumina HiSeq 2500 sequencer at the SNP&SEQ sequencing facility (Science for Life laboratory (SciLifeLab), Uppsala sequencing node). The reads were aligned to the Ensembl mouse gene assembly (NCBIM37) using Tophat2 software (version 2.0.4). The duplicated reads were removed using the picard tool (version 1.92). To identify the genes significantly enriched in the pericyte samples as compared with microvascular samples, statistical tests were performed using the Cufflinks tool (version 2.2.1) Results: Twenty-three genes were significantly regulated in mutant when compared to WT (False Discovery Rate < 0.05) Overall design: The microvascular RNA from two male heterozygous Ins2-AKITA mice and three littermate wild-type controls were processed and sequenced on the Illumina HiSeq 2500 platform in the sequencing facility in Uppsala University.
Prolonged systemic hyperglycemia does not cause pericyte loss and permeability at the mouse blood-brain barrier.
Sex, Specimen part, Subject
View Samples