These E. coli strains were grown with various signaling molecules and the expression profiles were determined.
Global effects of the cell-to-cell signaling molecules autoinducer-2, autoinducer-3, and epinephrine in a luxS mutant of enterohemorrhagic Escherichia coli.
No sample metadata fields
View SamplesEnterohemorrhagic E. coli (EHEC) colonizes the large intestine and causes attaching and effacing lesions (AE). Most of the genes involved in the formation of AE lesions are encoded within a chromosomal pathogenicity island termed the Locus of Enterocyte Effacement (LEE). The LysR-like transcriptional factor QseA regulates the LEE by binding directly to the regulatory region of ler. Here, we performed transcriptome analyses comparing WT EHEC and the isogenic qseA mutant in order to elucidate the extent of QseAs role in gene regulation in EHEC. The following results compare genes that were up-regulated and down-regulated ! 2-fold in the qseA mutant strain compared to the WT strain. At mid-exponential growth, 222 genes were up-regulated and 1874 were downregulated. At late-exponential growth, a total of 55 genes were up-regulated and 605 genes were down-regulated. During mid-exponential growth, QseA represses its own transcription, whereas during late-logarithmic growth, QseA activates expression of the LEE genes as well as non-LEE encoded effector proteins. During both growth phases, several genes carried in O-islands, were activated by QseA, whereas genes involved in cell metabolism were repressed. We also performed electrophoretic mobility shift assays, competition experiments, and DNAseI footprints, and the results suggested that QseA directly binds both the ler proximal and distal promoters, its own promoter, as well as promoters of genes encoded in EHEC-specific O-islands. Additionally, we mapped the transcriptional start site of qseA, leading to the identification of two promoter sequences. Taken together, these results indicate that QseA acts as a global regulator in EHEC, coordinating expression of virulence genes.
The LysR-type regulator QseA regulates both characterized and putative virulence genes in enterohaemorrhagic Escherichia coli O157:H7.
No sample metadata fields
View SamplesWe found that hyperglycemia and elevated fatty acids in diabetes could activate protein kinase C- isoforms and selectively induce insulin resistance via inhibiting vascular insulin signaling.
Insulin decreases atherosclerosis by inducing endothelin receptor B expression.
Age, Specimen part, Disease, Disease stage, Treatment
View SamplesEscherichia coli 8624 and the isogenic mutants in qseE, qseF and qseG are compared to determine the role that each of the genes play in regulation of the transcriptome. These results are verified by qRT-PCR and reveal the important role of this three-component signaling system.
The two-component system QseEF and the membrane protein QseG link adrenergic and stress sensing to bacterial pathogenesis.
No sample metadata fields
View SamplesThe ability to respond to stress is at the core of an organisms survival. The hormones epinephrine and norepinephrine play a central role in stress responses in mammals, which require the synchronized interaction of the whole neuroendocrine system. Bacteria also sense and respond to epinephrine and norepinephrine as a means to gauge the metabolic and immune state of the host. Mammalian adrenergic receptors are G-coupled protein receptors (GPCRs), bacteria, however, sense these hormones through histidine sensor kinases (HKs). HKs autophosphorylate in response to multiple signals and transfer this phosphate to response regulators (RRs). Two bacterial adrenergic receptors have been identified in EHEC, QseC and QseE, with QseE being downstream of QseC in this signaling cascade. We mapped the QseC signaling cascade in the deadly pathogen enterohemorrhagic E. coli (EHEC), which exploits this signaling system to promote disease. Through QseC, EHEC activates expression of metabolic, virulence and stress response genes, synchronizing the cell response to these stress hormones. Coordination of these responses is achieved by QseC phosphorylating three of the thirty two EHEC RRs. The QseB RR, which is QseCs cognate RR, activates the flagella regulon which controls bacteria motility and chemotaxis. The QseF RR, which is phosphorylated by the QseE adrenergic sensor, coordinates expression of virulence genes involved in formation of lesions in the intestinal epithelia by EHEC, and the bacterial SOS stress response. The third RR, KdpE, controls potassium uptake, osmolarity response, and also the formation of lesions in the intestine. Adrenergic regulation of bacterial gene expression shares several parallels with mammalian adrenergic signaling having profound effects in the whole organism. Understanding adrenergic regulation of a bacterial cell is a powerful approach to study the underlying mechanisms of stress and cellular survival.
The QseC adrenergic signaling cascade in Enterohemorrhagic E. coli (EHEC).
No sample metadata fields
View SamplesThis SuperSeries is composed of the SubSeries listed below.
Primate-specific endogenous retrovirus-driven transcription defines naive-like stem cells.
Sex, Specimen part, Cell line
View SamplesWe surveyed RNA-Seq data to identify those TEs that are transcriptionally active uniquely in human pluripotent cells. We identified one endogenous retrovirus (HERV-H) family, uniquely found in primates as being unusually abundant in the transcriptome. The microarray data provided is to support our human naive cell hypothesis.
Primate-specific endogenous retrovirus-driven transcription defines naive-like stem cells.
Sex, Cell line
View SamplesThis SuperSeries is composed of the SubSeries listed below.
Identification of nuclear-enriched miRNAs during mouse granulopoiesis.
Specimen part
View SamplesDifferentiation of hemopoietic stem cells into granulocytes is characterized by distinct changes in the transcriptome.
Identification of nuclear-enriched miRNAs during mouse granulopoiesis.
Specimen part
View SamplesThe identification of novel tumor-specific markers may improve understanding of melanoma progression and prognostic accuracy. Whole genome expression profiling of 46 primary melanomas, 12 metastases, and 16 normal skin samples using Affymetrix U133 PLUS 2.0 array generated gene lists including both known and new melanoma genes.
Transcriptome profiling identifies HMGA2 as a biomarker of melanoma progression and prognosis.
Sex, Age, Disease
View Samples