Deposition of histone variant H2A.Z by the SWR1 chromatin-remodeling complex is critical for the appropriate expression of many genes in eukaryotes, yet, despite its importance, the composition of the Arabidopsis SWR1 complex has not been thoroughly analyzed. Here we have identified the interacting partners of a conserved Arabidopsis SWR1 subunit, actin-related protein 6 (ARP6). We isolated 9 predicted components, identifying subunits implicated in histone acetylation and interacting partners implicated in chromatin biology. We found that the methyl-CpG-binding domain 9 (MBD9) subunit functioned synergistically with ARP6 to control flowering time. MBD9, in combination with ARP6, was involved in the SWR1-mediated incorporation of the majority of H2A.Z. MBD6 was further required for deposition of H2A.Z at a distinct subset of loci. MBD9 was preferentially bound to nucleosome-depleted regions at the 5' of genes containing high levels of activating histone marks. Our data suggests a model for MBD9 in recruiting the SWR1 complex to open chromatin of actively transcribing genes. Overall design: Total RNA was extracted from 13 DAG shoots grown on 1%MS supplemented with 1% sucrose under long day conditions. Four replicates, grown on separate plates were collected for each genotype. Each replicate conisted of three seedlings. RNA was extracted using Direct-zol RNA Miniprep kit (Zymo). For RNA-Seq, 1ug of total RNA was used to prepare libraries using the TrueSeq Stranded mRNA-Seq kit (Illumina).
Arabidopsis SWR1-associated protein methyl-CpG-binding domain 9 is required for histone H2A.Z deposition.
Subject
View SamplesIschemic cardiopathy is the leading cause of death in the world, for which efficient regenerative therapy is not currently available. In mammals, after a myocardial infarction episode, the damaged myocardium is replaced by scar tissue featuring collagen deposition and tissue remodelling with negligible cardiomyocyte proliferation. Zebrafish, in contrast, display an extensive regenerative capacity as they are able to restore completely lost cardiac tissue after partial ventricular amputation. Due to the lack of genetic lineage tracing evidence, it is not yet clear if new cardiomyocytes arise from existing contractile cells or from an uncharacterised set of progenitors cells. Nonetheless, several genes and molecules have been shown to participate in this process, some of them being cardiomyocyte mitogens in vitro. Though questions as what are the early signals that drive the regenerative response and what is the relative role of each cardiac cell in this process still need to be answered, the zebrafish is emerging as a very valuable tool to understand heart regeneration and devise strategies that may be of potential value to treat human cardiac disease. Here, we performed a genome-wide transcriptome profile analysis focusing on the early time points of zebrafish heart regeneration and compared our results with those of previously published data. Our analyses confirmed the differential expression of several transcripts, and identified additional genes the expression of which is differentially regulated during zebrafish heart regeneration. We validated the microarray data by conventional and/or quantitative RT-PCR. For a subset of these genes, their expression pattern was analyzed by in situ hybridization and shown to be upregulated in the regenerating area of the heart. The specific role of these new transcripts during zebrafish heart regeneration was further investigated ex vivo using primary cultures of zebrafish cardiomyocytes and/or epicardial cells. Our results offer new insights into the biology of heart regeneration in the zebrafish and, together with future experiments in mammals, may be of potential interest for clinical applications.
Transcriptomics approach to investigate zebrafish heart regeneration.
Specimen part, Time
View SamplesPurpose: To determine effects of arsenic on gene expression in polarized primary human bronchial epithelial (HBE) cells and impact on transcriptional response to Pseudomonas aeruginosa infection Methods: mRNA profiles of HBE cells from 6 donors exposed to 0, 5, 10 or 50 ug/L total arsenic +/- Pseudomonas aeruginosa (48 samples) were generated using Illumina sequencing, aligned in CLC Genomics workbench and analyzed for DE in EdgeR Findings: 20-30 million reads were mapped per sample and transcripts were identifed that were significantly differentially expressed in response to arsenic and Pseudomonas aeruginosa Overall design: Gene expression profiles of HBE cells from 6 donors exposed to three concentrations of arsenic +/- Pseudomonas were generated using mRNA sequencing
Arsenic alters transcriptional responses to Pseudomonas aeruginosa infection and decreases antimicrobial defense of human airway epithelial cells.
Sex, Specimen part, Subject
View SamplesOrganophosphorus compounds may induce neurotoxicity through mechanisms other than the cholinergic pathway, which need to be unraveled by a comprehensive and systematic approach such as genome-wide gene expression analysis.
Toxicogenomic studies of human neural cells following exposure to organophosphorus chemical warfare nerve agent VX.
Specimen part
View SamplesMacrophages phagocytose bacteria. Certain pathogenic bacteria access and replicate within the cytosol of infected macrophages and induce changes in macrophage gene expression by triggering of innate immune receptors and/or the effects of bacterial virulence factors. We used microarray analysis to identify changes in macrophage gene expression following infection with Listeria monocytogenes.
Induction of IFN-alphabeta enables Listeria monocytogenes to suppress macrophage activation by IFN-gamma.
Sex, Specimen part
View SamplesTranscriptome analysis by RNAseq of leukemia model promoted by MLL-Af4 or MLL-AF9 fusion proteins. We find each fusion protein promotes a specific gene signature correlating to those identified in patients Overall design: Human CD34+ hematopoietic stem and progenitor cells were transduced with retrovirus expressing MLL-Af4 or MLL-AF9. Transduced cells were transplanted into immunodeficient mice to induce lymphoid leukemia or placed in myeloid in vitro culture. CD19+ lymphoid leukemia cells (3 AF9, 6 Af4), control health CD19+CD34+ proB cells (n=3) and 4 pairs of Af4 and AF9 CD33+CD19- myeloid culture cells were collected for RNA-seq
Instructive Role of MLL-Fusion Proteins Revealed by a Model of t(4;11) Pro-B Acute Lymphoblastic Leukemia.
No sample metadata fields
View SamplesLung cancer is the leading cause of cancer related mortality worldwide, with non-small cell lung cancer (NSCLC) as the most prevalent form. Despite advances in treatment options including minimally invasive surgery, CT-guided radiation, novel chemotherapeutic regimens, and targeted therapeutics, prognosis remains dismal. Therefore, further molecular analysis of NSCLC is necessary to identify novel molecular targets that impact prognosis and the design of new-targeted therapies. In recent years, tumor “activated/reprogrammed” stromal cells that promote carcinogenesis have emerged as potential therapeutic targets. However, the contribution of stromal cells to NSCLC is poorly understood. Here, we show increased numbers of bone marrow (BM)-derived hematopoietic cells in the tumor parenchyma of NSCLC patients compared with matched adjacent non-neoplastic lung tissue. By sorting specific cellular fractions from lung cancer patients, we compared the transcriptomes of intratumoral myeloid compartments within the tumor bed with their counterparts within adjacent non-neoplastic tissue from NSCLC patients. The RNA sequencing of specific myeloid compartments (immature monocytic myeloid cells and polymorphonuclear neutrophils) identified differentially regulated genes and mRNA isoforms, which were inconspicuous in whole tumor analysis. Genes encoding secreted factors, including osteopontin (OPN), chemokine (C-C motif) ligand 7 (CCL7) and thrombospondin 1 (TSP1) were identified, which enhanced tumorigenic properties of lung cancer cells indicative of their potential as targets for therapy. This study demonstrates that analysis of homogeneous stromal populations isolated directly from fresh clinical specimens can detect important stromal genes of therapeutic value. Overall design: We sorted pure populations of the immature monocytic myeloid cells (IMMCs), neutrophils (Neu), and epithelial cells (Epi) from tumors and adjacent lung tissues of stage I-III lung adenocarcinoma patients. RNA samples (totally 17 samples) were sequenced: from tumor IMMC (n=3), Neu (n=2), Epi (n=2); from adjacent lung IMMC (n=3), Neu (n=4), Epi (n=3).
Identification of Reprogrammed Myeloid Cell Transcriptomes in NSCLC.
No sample metadata fields
View SamplesHow type I / II interferons (IFNs) prevent periodic re-emergence of latent pathogens in tissues of diverse cell-types remains unknown. Using homogenous neuron cultures latently-infected with herpes simplex virus (HSV), we show that extrinsic type I or II IFN act directly on neurons to induce unique gene expression signatures and inhibit the reactivation-specific burst of viral genome-wide transcription called Phase I. Surprisingly, IFNs suppressed reactivation only during a limited period early in Phase I preceding productive virus growth. Sensitivity to type II IFN was selectively lost if viral ICP0, which normally accumulates later in Phase I, was expressed prior to reactivation. Thus, IFNs suppress reactivation by preventing initial expression of latent genomes but are ineffective once Phase I viral proteins accumulate and limit IFN action. This demonstrates that inducible reactivation from latency is only transiently sensitive to IFNs. Moreover, it illustrates how latent pathogens escape host immune control to periodically replicate by rapidly deploying an interferon-resistant state. Overall design: Superior cervical ganglia (SCG) neuron cultures harboring reactivating HSV-1 treated with IFNb or IFNg. Neurons were harvested for RNA 20h after reactivation (in the presence or absence of IFN) for RNA-seq. Libraries were generated following Illumina Truseq Ribo-Zero protocol.
Immune Escape via a Transient Gene Expression Program Enables Productive Replication of a Latent Pathogen.
No sample metadata fields
View SamplesTotal RNA was extracted from apratoxin A or vehicle treated HT29 cells using the RNeasy Mini Kit (Qiagen). Probe values from CEL files were condensed to probe sets using Rosetta Resolver software. Resolver ANOVA analysis was then performed between groups.
A functional genomics approach to the mode of action of apratoxin A.
No sample metadata fields
View SamplesThe CD19 positive antibody secreting cells (ASC) in both bone marrow (BM) have the capacity to provide immune memory in addition to cells traditionally considered long-lived, the CD19-negative BM ASC. We performed flow cytometry (FCM) immunophenotyping, fluorescence-activated cell sorting (FACS) for cell subset isolation, ELISpot assays detecting the isotype of antibody secretion as well as antibodies against vaccine derived antigens, and comparative gene expression analyses of CD19- ASC, CD19+ ASC, CD20- B cells, and CD20+ B cells from BM. The findings may aid in the understanding of the differential cell subsets created through vaccination and lead to improved vaccine strategies and production. FACS sorted tissue B cells and antibody secreting cell subset gene expression.
CD19-positive antibody-secreting cells provide immune memory.
Specimen part
View Samples