refine.bio
  • Search
      • Normalized Compendia
      • RNA-seq Sample Compendia
  • Docs
  • About
  • My Dataset
    0
github link
Build and Download Custom Datasets
refine.bio helps you build ready-to-use datasets with normalized transcriptome data from all of the world’s genetic databases.
Showing
of 74 results
Sort by

Filters

Technology

Platform

accession-icon GSE110613
Profiling of villi transcriptome in Trpm7 gene deficient mice and control littermates.
  • organism-icon Mus musculus
  • sample-icon 6 Downloadable Samples
  • Technology Badge Icon Affymetrix Mouse Gene 1.0 ST Array (mogene10st)

Description

To attain deeper insight into metabolic alterations in Trpm7 gene deficient mice we used microarrays for profiling of transcripts in villi of Trpm7 ko and control mice.

Publication Title

TRPM7 is the central gatekeeper of intestinal mineral absorption essential for postnatal survival.

Sample Metadata Fields

Sex, Age

View Samples
accession-icon SRP067454
Myc-dependent gene activation and repression in oncogene-addicted liver tumors (RNA-seq)
  • organism-icon Mus musculus
  • sample-icon 43 Downloadable Samples
  • Technology Badge IconIllumina HiSeq 2000

Description

Tumors driven by activation of the transcription factor Myc generally show oncogene addiction. However, the gene-expression programs that depend upon sustained Myc activity in those tumors remain unknown. We have addressed this issue in a model of liver carcinoma driven by a reversible tet-Myc transgene, combining gene expression profiling with the mapping of Myc and RNA Polymerase II on chromatin. Switching off the oncogene in advanced carcinomas revealed that Myc is required for the continuous activation and repression of distinct sets of genes, constituting no more than half of those deregulated during tumor progression, and an even smaller subset of all Myc-bound genes. We further showed that a Myc mutant unable to associate with the co-repressor protein Miz1 is defective in the initiation of liver tumorigenesis. Altogether, our data provide the first detailed analysis of a Myc-dependent transcriptional program in a fully developed carcinoma, revealing that the critical effectors of Myc in tumor maintenance must be included within defined subsets (ca. 1,300 each) of activated and repressed genes. Overall design: RNAseq samples of control liver (n=11), tet-Myc tumors (n=16), tet-Myc tumors with short-term Myc inactivation (n=8), tet-MycVD tumors (n=11)

Publication Title

Identification of MYC-Dependent Transcriptional Programs in Oncogene-Addicted Liver Tumors.

Sample Metadata Fields

Specimen part, Cell line, Subject

View Samples
accession-icon SRP172706
RNA-seq transcriptome profiling of hybrid (hawaii mother and bristol father) C. elegans H3K27me3 M+P+ vs. M+P- hermaphrodite germlines
  • organism-icon Caenorhabditis elegans
  • sample-icon 12 Downloadable Samples
  • Technology Badge IconIllumina HiSeq 4000

Description

Worms that inherited the sperm genome lacking the repressive mark H3K27me3 (K27me3 M+P-) misexpress genes in their germlines when compared to genetically identitical worms that inherited the sperm genome with H3K27me3 (K27me3 M+P+). Overall design: Transcriptome profiles of hermaphrodite germlines from hybrid worms that inherited the sperm genome with H3K27me3 (4 replicates of K27me3 M+P+) vs without H3K27me3 (4 replicates K27me3 M+P-) to compare to 4 replicates of 'wildtype'.

Publication Title

Sperm-inherited H3K27me3 impacts offspring transcription and development in C. elegans.

Sample Metadata Fields

Specimen part, Cell line, Subject

View Samples
accession-icon SRP068564
Transcriptome profiling of sterile daf-2; mes-1 double vs. mes-1 single mutants
  • organism-icon Caenorhabditis elegans
  • sample-icon 6 Downloadable Samples
  • Technology Badge IconIllumina HiSeq 2000

Description

The germ lineage is considered to be immortal. In the quest to extend lifespan, a possible strategy is to drive germline traits in somatic cells, to try to confer some of the germ lineage’s immortality on the somatic body. Notably, a study in C. elegans suggested that expression of germline genes in the somatic cells of long-lived daf-2 mutants confers some of daf-2’s longevity. Specifically, mRNAs encoding components of C. elegans germ granules (P granules) were up-regulated in daf-2 mutant worms, and knock-down of individual P-granule and other germline genes in daf-2 young adults modestly reduced their lifespan. We investigated the contribution of a germline program to daf-2’s long lifespan, and also tested if other mutants known to express germline genes in their somatic cells are long-lived. Our key findings are: 1) We could not detect P-granule proteins in the somatic cells of daf-2 mutants by immunostaining or by expression of a P-granule transgene. 2) Whole-genome transcript profiling of animals lacking a germline revealed that germline transcripts are not up-regulated in the soma of daf-2 worms compared to the soma of control worms. 3) Simultaneous removal of multiple P-granule proteins or the entire germline program from daf-2 worms did not reduce their lifespan. 4) Several mutants that robustly express a broad spectrum of germline genes in their somatic cells are not long-lived. Taken together, our findings argue against the hypothesis that acquisition of a germ cell program in somatic cells increases lifespan and contributes to daf-2’s longevity. Overall design: Transcriptome profiles of 3 replicates of sterile daf-2; mes-1 double mutants (experimental) and 3 replicates of sterile mes-1 single mutants (control) grown at 24°C

Publication Title

Reevaluation of whether a soma-to-germ-line transformation extends lifespan in Caenorhabditis elegans.

Sample Metadata Fields

Cell line, Subject

View Samples
accession-icon GSE52064
DRM complex mutant lin-54 vs. H3K36 methyltransferase mutant mes-4 vs. lin-54; mes-4 double mutant vs. wild type C.elegans germline
  • organism-icon Caenorhabditis elegans
  • sample-icon 12 Downloadable Samples
  • Technology Badge Icon Affymetrix C. elegans Genome Array (celegans)

Description

Here we uncover antagonistic regulation of transcript levels in the germline of Caenorhabditis elegans hermaphrodites. The histone methyltransferase MES-4 marks genes expressed in the germline with methylated Lys36 on histone H3 (H3K36me) and promotes their transcription; MES-4 also represses genes normally expressed in somatic cells and genes on the X chromosomes. The DRM complex, which includes E2F/DP and Retinoblastoma homologs, affects germline gene expression and prevents excessive repression of X-chromosome genes. Using genome-scale analyses of germline tissue, we show that common germline-expressed genes are activated by MES-4 and repressed by DRM, and that MES-4 and DRM co-bind many germline-expressed genes. Reciprocally, MES-4 represses and DRM activates a set of autosomal soma-expressed genes and overall X-chromosome gene expression. Mutations in mes-4 or the DRM subunit lin-54 oppositely skew target transcript levels and cause sterility; a double mutant restores near wild-type transcript levels and germ cell development. Together, yin-yang regulation by MES-4 and DRM ensures transcript levels appropriate for germ cell function, elicits robust but not excessive dampening of X-chromosome-wide transcription, and may poise genes for future expression changes. Our study reveals that conserved transcriptional regulators implicated in development and cancer counteract each other to fine-tune transcript dosage.

Publication Title

Opposing activities of DRM and MES-4 tune gene expression and X-chromosome repression in Caenorhabditis elegans germ cells.

Sample Metadata Fields

Sex

View Samples
accession-icon GSE1786
Vastus lateralis biopsies from healthy trained and sedentary males
  • organism-icon Homo sapiens
  • sample-icon 24 Downloadable Samples
  • Technology Badge Icon Affymetrix Human Genome U133A Array (hgu133a)

Description

Needle biopsies were obtained from the vastus lateralis muscle of 6 healthy, sedentary, 672.5 year-old males before and after 3 months of training.

Publication Title

Effects of aerobic training on gene expression in skeletal muscle of elderly men.

Sample Metadata Fields

No sample metadata fields

View Samples
accession-icon GSE18108
Analysis of the inflammatory transcription profiles of WT and Bid/ microglia
  • organism-icon Mus musculus
  • sample-icon 4 Downloadable Samples
  • Technology Badge Icon Affymetrix Mouse Gene 1.0 ST Array (mogene10st)

Description

Apoptosis is a controlled cell-death process mediated inter alia by proteins of the Bcl-2 family. Some proteins previously shown to promote the apoptotic process were found to have non-apoptotic functions as well. Microglia, the resident immune cells of the central nervous system, respond to brain derangements by becoming activated to contend with the brain damage. Activated microglia can also undergo activation-induced cell death. Previous studies have addressed the role of core apoptotic proteins in the death process, but whether or not these proteins also play a role in the activation process has not been reported. Here we explore the effect of the BH3-only protein Bid on the immunological features of microglia by subjecting both WT and Bid deficient primary neonatal microglial cultures to LPS treatment (100 ng/ml, 3h) or left untreated (control) and analyzing their transcription profiles in order to study the role of Bid.

Publication Title

Bid regulates the immunological profile of murine microglia and macrophages.

Sample Metadata Fields

Specimen part

View Samples
accession-icon SRP108626
RNA-Sequencing of the Thyroid and Liver of Males Rats Exposed to Acrylamide
  • organism-icon Rattus norvegicus
  • sample-icon 169 Downloadable Samples
  • Technology Badge IconIonTorrentProton

Description

We explored mechanisms of carcinogenicity of acrylamide in the rat thyroid. We compared the transcriptome profiles of target(thyroid) vs non-target(liver) tissues.

Publication Title

Transcriptional profiling of male F344 rats suggests the involvement of calcium signaling in the mode of action of acrylamide-induced thyroid cancer.

Sample Metadata Fields

No sample metadata fields

View Samples
accession-icon E-MEXP-3073
Transcription profiling by array of soybean NIL-R vs NIL-S captured syncitia after infection with soybean cyst nematode
  • organism-icon Glycine max
  • sample-icon 11 Downloadable Samples
  • Technology Badge Icon Affymetrix Soybean Genome Array (soybean)

Description

Comparison of syncytia gene expression between soybean near-isogenic lines 7923R (NIL-R) and 7923S (NIL-S) infected with the soybean cyst nematode (PA3).

Publication Title

The Soybean Rhg1 locus for resistance to the soybean cyst nematode Heterodera glycines regulates the expression of a large number of stress- and defense-related genes in degenerating feeding cells.

Sample Metadata Fields

Specimen part

View Samples
accession-icon SRP049391
Next-Generation Sequencing Analysis Reveals Differential Expression Profiles of miRNA-mRNA Target Pairs in KSHV-Infected Cells [mRNA-Seq]
  • organism-icon Homo sapiens
  • sample-icon 6 Downloadable Samples
  • Technology Badge IconIlluminaHiSeq2000

Description

This SuperSeries is composed of the SubSeries listed below. Purpose: Kaposi’s sarcoma (KS)-associated herpesvirus (KSHV) causes several lymphoproliferative disorders, including KS, a common AIDS-associated malignancy. Cellular and viral microRNAs (miRNAs) have been shown to play important roles in regulating the expression of genes in oncogenesis. Herpesviruses, including KSHV, encode for miRNAs that are involved in angiogenesis, inflammation and apoptosis. A better knowledge of the miRNA-mediated pathways that regulate KSHV infection is therefore essential for an improved understanding of viral infection and pathogenesis. Methods: In this study, we used deep sequencing to analyze miRNA, both viral and human, and mRNA expression in KS tumor-derived human cells. Results: This approach revealed 153 differentially expressed human miRNAs between KSHV-positive and -negative cells. Differential expression of eight miRNAs was independently confirmed by qRT-PCR. We additionally showed that a majority (~73%) of KSHV-regulated miRNAs are down-regulated, including most members of the 14q32 miRNA cluster. Specifically, human miR-409-3p, which is known to target the pro-angiogenic growth factor angiogenin and the inflammation marker fibrinogen-beta, was significantly down-regulated in KSHV-infected cells based on deep sequencing and qRT-PCR. Despite this substantial down-regulation of cellular miRNAs, hsa-miR-708-5p was significantly up-regulated by KSHV and has been shown to directly inhibit pro-apoptotic protease Caspase-2. Finally, we evaluated to what extent there was an inverse correlation between miRNA and mRNA expression levels. Using filtered datasets, we identified relevant canonical pathways that were significantly enriched. Conclusion: Taken together, our data demonstrate that most human miRNAs affected by KSHV are repressed and our findings highlight the relevance of studying the post-transcriptional gene regulation of miRNAs for KSHV-associated malignancies. Overall design: Refer to individual Series. 6 samples analyzed (one cell type). Two experimental conditions: uninfected vs. chronically KSHV-infected cells (n=3). Two sequencing platforms: microRNA-Seq and mRNA-Seq.

Publication Title

Next-Generation Sequencing Analysis Reveals Differential Expression Profiles of MiRNA-mRNA Target Pairs in KSHV-Infected Cells.

Sample Metadata Fields

No sample metadata fields

View Samples
...

refine.bio is a repository of uniformly processed and normalized, ready-to-use transcriptome data from publicly available sources. refine.bio is a project of the Childhood Cancer Data Lab (CCDL)

fund-icon Fund the CCDL

Developed by the Childhood Cancer Data Lab

Powered by Alex's Lemonade Stand Foundation

Cite refine.bio

Casey S. Greene, Dongbo Hu, Richard W. W. Jones, Stephanie Liu, David S. Mejia, Rob Patro, Stephen R. Piccolo, Ariel Rodriguez Romero, Hirak Sarkar, Candace L. Savonen, Jaclyn N. Taroni, William E. Vauclain, Deepashree Venkatesh Prasad, Kurt G. Wheeler. refine.bio: a resource of uniformly processed publicly available gene expression datasets.
URL: https://www.refine.bio

Note that the contributor list is in alphabetical order as we prepare a manuscript for submission.

BSD 3-Clause LicensePrivacyTerms of UseContact