refine.bio
  • Search
      • Normalized Compendia
      • RNA-seq Sample Compendia
  • Docs
  • About
  • My Dataset
github link
Showing
of 76 results
Sort by

Filters

Technology

Platform

accession-icon SRP055413
Allele-selective Transcriptome Recruitment to Polysomes Primed for Translation: Protein-coding and Noncoding RNAs, and RNA Isoforms
  • organism-icon Homo sapiens
  • sample-icon 6 Downloadable Samples
  • Technology Badge IconIonTorrentProton

Description

Purpose: mRNA translation into protein is highly regulated, but the role of mRNA isoforms, noncoding RNAs (ncRNAs), and genetic variants has yet to be systematically studied. Using high-throughput sequencing (RNA-seq), we have measured cellular levels of mRNAs and ncRNAs, and their isoforms, in lymphoblast cell lines (LCL) and in polysomal fractions, the latter shown to yield strong correlations of mRNAs with expressed protein levels. Analysis of allelic RNA ratios at heterozygous SNPs served to reveal genetic factors in ribosomal loading. Methods: RNA-seq was performed on cytosolic extracts and polysomal fractions (3 ribosomes or more) from three lymphoblastoid cell lines. As each RNA fraction was amplified (NuGen kit), and relative contributions from various RNA classes differed between cytosol and polysomes, the fraction of any given RNA species loaded onto polysomes was difficult to quantitate. Therefore, we focused on relative recovery of the various RNA classes and rank order of single RNAs compared to total RNA. Results: RNA-seq of coding and non-coding RNAs (including microRNAs) in three LCLs revealed significant differences in polysomal loading of individual RNAs and isoforms, and between RNA classes. Moreover, correlated distribution between protein-coding and non-coding RNAs suggests possible interactions between them. Allele-selective RNA recruitment revealed strong genetic influence on polysomal loading for multiple RNAs. Allelic effects can be attributed to generation of different RNA isoforms before polysomal loading or to differential loading onto polysomes, the latter defining a direct genetic effect on translation. Several variants and genes identified by this approach are also associated with RNA expression and clinical phenotypes in various databases. Conclusions: These results provide a novel approach using complete transcriptome RNA-seq to study polysomal RNA recruitment and regulatory variants affecting protein translation. Overall design: cells from 3 samples were grown to 5x105 cells/mL density in T75 tissue culture flask and harvested, total RNA and polysome bound RNA was sequenced by Ion Proton

Publication Title

Allele-Selective Transcriptome Recruitment to Polysomes Primed for Translation: Protein-Coding and Noncoding RNAs, and RNA Isoforms.

Sample Metadata Fields

No sample metadata fields

View Samples
accession-icon GSE11039
Expression Data from wild type and E2F4 null MEFs
  • organism-icon Mus musculus
  • sample-icon 20 Downloadable Samples
  • Technology Badge Icon Affymetrix Mouse Genome 430A 2.0 Array (mouse430a2)

Description

We have used primary MEFs derived from wild type and E2F4 null mice growing asynchrounously in serum to generate a signature for E2F4 pathway activation. 10 wild type and 10 E2F4 null samples were each assayed using the Affymetrics Mouse Genome 430A 2.0 array.

Publication Title

Patterns of cell signaling pathway activation that characterize mammary development.

Sample Metadata Fields

No sample metadata fields

View Samples
accession-icon GSE99861
The effect of EDI3 inhibition in MCF7 breast cancer cells
  • organism-icon Homo sapiens
  • sample-icon 12 Downloadable Samples
  • Technology Badge Icon Affymetrix Human Genome U133 Plus 2.0 Array (hgu133plus2)

Description

EDI3 was shown to be relevant in cell migration, adhesion and spreading. Gene expression analysis was performed to determine the effect of EDI3 silencing in MCF7 cells in order to gain insight into potential underlying mechanisms.

Publication Title

EDI3 links choline metabolism to integrin expression, cell adhesion and spreading.

Sample Metadata Fields

Specimen part, Cell line

View Samples
accession-icon GSE29247
Expression data from junctional zone of placenta in Brown Norway and Holtzman-Sprague Dawley rat strains at gestation day 18.5
  • organism-icon Rattus norvegicus
  • sample-icon 6 Downloadable Samples
  • Technology Badge Icon Affymetrix Rat Genome 230 2.0 Array (rat2302)

Description

Placentation differs in the BN rat strain when compared to HSD and DSS rat strains. Intrauterine trophoblast invasion is shallow and the junctional zone is underdeveloped in the BN rat. These structural differences are striking but their quantification is not conducive to high throughput analyses. In the rat, the junctional zone can be readily dissected and is more homogenous than other components of the placentation site. HSD and BN rat gestation day 18.5 junctional zone gene expression profiles were determined using DNA microarray analysis to identity placenta-associate quantitate traits.

Publication Title

Chromosome-substituted rat strains provide insights into the genetics of placentation.

Sample Metadata Fields

Specimen part

View Samples
accession-icon GSE7897
Expression data from Mouse Lymphoma
  • organism-icon Mus musculus
  • sample-icon 57 Downloadable Samples
  • Technology Badge Icon Affymetrix Mouse Genome 430 2.0 Array (mouse4302)

Description

We have made use of the E-myc transgenic mouse, a model for the study of B-cell lymphoma development that is initiated through a defined genetic alteration, to explore the contributions of additional somatic alterations that contribute to the heterogeneity of the resulting tumors. As one example of such heterogeneity, we have focused on the observation that lymphomas develop in E-myc mice with a variable time of onset. Twenty-five early-onset, 25 late-onset lymphomas and 10 normal samples were each assayed on an Affymetrix Mouse Genome 430 2.0 array.

Publication Title

Utilization of pathway signatures to reveal distinct types of B lymphoma in the Emicro-myc model and human diffuse large B-cell lymphoma.

Sample Metadata Fields

No sample metadata fields

View Samples
accession-icon GSE40760
The E-myc Mouse Model Represents Heterogeneity Across Human Aggressive B-cell Lymphomas
  • organism-icon Mus musculus
  • sample-icon 115 Downloadable Samples
  • Technology Badge Icon Affymetrix Mouse Genome 430 2.0 Array (mouse4302)

Description

This SuperSeries is composed of the SubSeries listed below.

Publication Title

Utilization of the Eμ-Myc mouse to model heterogeneity of therapeutic response.

Sample Metadata Fields

Specimen part

View Samples
accession-icon GSE40758
Transgenic E-myc mouse lymphoma expression data for test dataset [Mouse430A_2]
  • organism-icon Mus musculus
  • sample-icon 44 Downloadable Samples
  • Technology Badge Icon Affymetrix Mouse Genome 430 2.0 Array (mouse4302)

Description

We used gene expression data from E-myc mouse lymphomas to test various genomic signatures and select lymphomas for further study

Publication Title

Utilization of the Eμ-Myc mouse to model heterogeneity of therapeutic response.

Sample Metadata Fields

Specimen part

View Samples
accession-icon GSE40756
Transgenic E-myc mouse lymphoma expression data for training dataset
  • organism-icon Mus musculus
  • sample-icon 39 Downloadable Samples
  • Technology Badge Icon Affymetrix Mouse Genome 430 2.0 Array (mouse4302)

Description

We used gene expression data from E-myc mouse lymphomas to perform unsupervised analyses that identified two lymphoma subgroups.

Publication Title

Utilization of the Eμ-Myc mouse to model heterogeneity of therapeutic response.

Sample Metadata Fields

Specimen part

View Samples
accession-icon GSE40757
Transgenic E-myc mouse lymphoma expression data for test dataset [Mouse430_2]
  • organism-icon Mus musculus
  • sample-icon 32 Downloadable Samples
  • Technology Badge Icon Affymetrix Mouse Genome 430 2.0 Array (mouse4302)

Description

We used gene expression data from E-myc mouse lymphomas to test various genomic signatures and select lymphomas for further study

Publication Title

Utilization of the Eμ-Myc mouse to model heterogeneity of therapeutic response.

Sample Metadata Fields

Specimen part

View Samples
accession-icon GSE13314
Gene expression profiling of pulmonary MALT lymphoma
  • organism-icon Homo sapiens
  • sample-icon 33 Downloadable Samples
  • Technology Badge Icon Affymetrix Human Genome U133 Plus 2.0 Array (hgu133plus2)

Description

Molecular pathways activated in MALT lymphoma are not well defined.

Publication Title

Gene expression profiling of pulmonary mucosa-associated lymphoid tissue lymphoma identifies new biologic insights with potential diagnostic and therapeutic applications.

Sample Metadata Fields

Sex

View Samples
...

refine.bio is a repository of uniformly processed and normalized, ready-to-use transcriptome data from publicly available sources. refine.bio is a project of the Childhood Cancer Data Lab (CCDL)

fund-icon Fund the CCDL

Developed by the Childhood Cancer Data Lab

Powered by Alex's Lemonade Stand Foundation

Cite refine.bio

Casey S. Greene, Dongbo Hu, Richard W. W. Jones, Stephanie Liu, David S. Mejia, Rob Patro, Stephen R. Piccolo, Ariel Rodriguez Romero, Hirak Sarkar, Candace L. Savonen, Jaclyn N. Taroni, William E. Vauclain, Deepashree Venkatesh Prasad, Kurt G. Wheeler. refine.bio: a resource of uniformly processed publicly available gene expression datasets.
URL: https://www.refine.bio

Note that the contributor list is in alphabetical order as we prepare a manuscript for submission.

BSD 3-Clause LicensePrivacyTerms of UseContact