Dendritic cells (DCs) are critical mediators of host defense against bacteria. The goal of this microarray study was to understand the global transcriptional response of bone marrow-derived dendritic cells (BMDCs) upon exposure to live bacteria, to better understand how DCs orchestrate a host-protective immune response. We found that BMDCs upregulate a number of critical immune-related genes upon exposure to live E. coli. Most notably, the gene encoding hepcidin, a critical regulator of mammalian iron homeostasis, was significantly upregulated in BMDCs upon exposure to live bacteria.
Dendritic cell-derived hepcidin sequesters iron from the microbiota to promote mucosal healing.
Specimen part
View SamplesThe goal of this study was to investigate the effects of vairous diets on the expression of genes involved in intermediary metabolism in liver. Adult wild type male mice (3 for each group) were fed with the corresponding diet for two weeks, and then liver samples were collected. Total RNA was isolated by the RNAzol B reagent, and pellet was disolved in DEPC-treated water. Total RNA was isolated using RNA Bee reagent (Tel-Test Inc., Friendswood, TX) per the manufacturers protocol. RNA concentrations were quantified using a NanoDrop Spectrophotometer (NanoDrop Technologies, Wilmington, DE) at a wavelength of 260 nm. The integrity of the total RNA samples was evaluated by formaldehyde-agarose gel electrophoresis, and confirmed by visualization of 18S and 28S rRNA bands. The gene expression was determined by Affymetrix Mouse 430 2.0 Gene Expression Microarray. Nine different diets were used: Diet 1. TD.84224. EFA Deficient diet; Diet 2. TD 97070. High fat diet: Diet 3. TD.88137. Adjusted Calories Diet (42% from fat) (Western Diet); Diet 4. TD.02028. Atherogenic Rodent Diet; Diet 5. TD.89247. 60% Fructose Diet; Diet 6. TD.94048. AIN-93M Purified Diet, Diet 7. Current rodent diet used in LAR; Diet 8. DHA-supplemented diet; Diet 9. Diet-restriction: 75% of the diet consumed by ad lib feeding. Mice (n=3/diet) were fed one of these diets (Harlan Laboratories) for 3 weeks. All mice were euthanized in the morning (8:0010:00 A.M.) and blood and tissue samples were collected. All procedures were approved in accordance with Institutional Animal Care and Use Committee guidelines.
Effect of diet on expression of genes involved in lipid metabolism, oxidative stress, and inflammation in mouse liver-insights into mechanisms of hepatic steatosis.
Sex, Age, Specimen part
View SamplesWe report the effects of exposure to the endocrine disurptor (2-ethylhexyl) phthalate (DEHP) on transcriptome modification in the livers of in vivo Zebrafish. Our data indicate changes in fatty acid metabolism and insulin resistance, pathways associated with the development of Non-Alcoholic Fatty Liver Disease (NAFLD). Overall design: Examination of transcriptome changes in an in vivo model organism exposed to a common, environmental compound.
Systems Analysis of the Liver Transcriptome in Adult Male Zebrafish Exposed to the Plasticizer (2-Ethylhexyl) Phthalate (DEHP).
No sample metadata fields
View SamplesThe approval of genetically modified (GM) crops is preceded by years of intensive research to demonstrate safety to humans and environment. We recently showed that in vitro culture stress is the major factor influencing proteomic differences of GM vs. non-GM plants. This made us question the number of generations needed to erase such memory. We also wondered about the relevance of alterations promoted by transgenesis as compared to environment-induced ones.
Environmental stress is the major cause of transcriptomic and proteomic changes in GM and non-GM plants.
Specimen part
View SamplesWe had previously discovered that the transcription factor OVO-like 1 (OVOL1) was highly induced during trophoblast differentiation. In this study, we used an lentiviral shRNA strategy to decrease OVOL1 expression in BeWo trophoblast cells. Control cells were transduced with shRNAs targeting no known mammalian transcript (shCont). Following stimulation of differentiation (48h exposure to 8-bromo-cyclic adenosine monophosphate), a RNA-seq approach was used to determine global transcript differences in OVOL1-knockdown cells compared to control cells. Overall design: Trophoblast cells transduced with control shRNAs were used as controls. Cells transduced with shRNAs targeting OVOL1 were used as treatment. All cells received 250 uM 8-bromo-cyclic adenosine monophosphate to stimulate differentiation. Three independent replicates of control and treatment groups were analyzed.
OVO-like 1 regulates progenitor cell fate in human trophoblast development.
No sample metadata fields
View SamplesBeWo trophoblast cells differentiate in response to expsure to cyclic adenosine monophosphate (cAMP) analogs. Differentiation includes syncytialization (fusion) and hormonogenesis. The goal of this study was to globally determine transcripts differentially expressed in BeWo trophoblast cells following a 24-h exposure to 250 uM 8-bromo-cAMP.
OVO-like 1 regulates progenitor cell fate in human trophoblast development.
Treatment
View SamplesCompared to other fish models, miRNAs are currently most extensively studied and identified in zebrafish. Approximately 415 dre-miRNAs have been identified and several articles have studied some aspect of miRNA function in zebrafish such as their role in basic development and in disease pathways. However, this field of research is in its infancy and the function of several dre-miRNAs, as well as their tissue-specific expression profile, are yet to be defined. In this study, the liver and gut were dissected (wildtype/untreated fish), total and small RNA were extracted, mRNA and miRNA libraries constructed and subjected to high throughput sequencing (HTS) using standard approaches. We carried out differential expression (DE) analysis and compared liver miRNA expression to gut using established bioinformatics pipelines. Through bioinformatics analysis, known and putative novel miRNAs were identified. Finally, we constructed a “miRNA matrix” that connects both total RNA-Seq and miRNA-Seq. Overall design: Examination of transcriptome in an in vivo model organism in two defined tissues, liver and gut.
Interplay Between MicroRNAs and Targeted Genes in Cellular Homeostasis of Adult Zebrafish (<i>Danio rerio</i>).
Sex, Specimen part, Subject
View SamplesPlacentation differs in the BN rat strain when compared to HSD and DSS rat strains. Intrauterine trophoblast invasion is shallow and the junctional zone is underdeveloped in the BN rat. These structural differences are striking but their quantification is not conducive to high throughput analyses. In the rat, the junctional zone can be readily dissected and is more homogenous than other components of the placentation site. HSD and BN rat gestation day 18.5 junctional zone gene expression profiles were determined using DNA microarray analysis to identity placenta-associate quantitate traits.
Chromosome-substituted rat strains provide insights into the genetics of placentation.
Specimen part
View SamplesExposure to bisphenol A (BPA), an endocrine disruptor (ED), has raised concerns for both human and ecosystem health. Epigenetic factors, including microRNAs, are key regulators of gene expression during cancer. The effect of BPA exposure on the zebrafish epigenome remains poorly characterized. Zebrafish represents an excellent model to study cancer as the organism develops disease that resembles human cancer. Using zebrafish as systems toxicology model, we hypothesized that chronic BPA-exposure impacts the miRNome in adult zebrafish and establishes an epigenome more susceptible to cancer development. After a 21 day exposure to 100 nM BPA, RNA from the liver was extracted to perform high throughput mRNA and miRNA sequencing. Differential expression (DE) analyses comparing BPA-exposed to control specimens were performed using established bioinformatics pipelines. In the BPA-exposed liver, 6,188 mRNAs and 15 miRNAs were differently expressed (q = 0.1). By analyzing human orthologs of the DE zebrafish genes signatures associated with non-alcoholic fatty liver disease (NAFLD), oxidative phosphorylation, mitochondrial dysfunction and cell cycle were uncovered. Chronic exposure to BPA has a significant impact on the liver miRNome in adult zebrafish and has the potential to cause adverse outcomes including cancer. Overall design: Examination of transcriptome changes in an in vivo model organism exposed to a common, environmental compound.
The Plasticizer Bisphenol A Perturbs the Hepatic Epigenome: A Systems Level Analysis of the miRNome.
No sample metadata fields
View SamplesRhabdoid tumors (RT) are aggressive tumors characterized by genetic loss of SMARCB1 (SNF5, INI-1), a component of the SWI/SNF chromatin remodeling complex. No effective treatment is currently available. This study seeks to shed light on the SMARCB1-mediated pathogenesis of RT and to discover potential therapeutic targets. Global gene expression of 10 RT was compared with 12 cellular mesoblastic nephromas, 16 clear cell sarcomas of the kidney, and 15 Wilms tumors. 114 top genes were differentially expressed in RT (p<0.001, fold change >2 or <0.5). Among these were down-regulation of SMARCB1 and genes previously associated with SMARCB1 (ATP1B1, PTN, DOCK4, NQO1, PLOD1, PTP4A2, PTPRK). 28/114 top differentially expressed genes were involved with neural or neural crest development and were all sharply down-regulated. This was confirmed by Gene Set Enrichment Analysis (GSEA). Neural and neural crest stem cell marker proteins SOX10, ID3, CD133 and Musashi were negative by immunohistochemistry, whereas Nestin was positive. Decreased expression of CDKN1A, CDKN1B, CDKN1C, CDKN2A, and CCND1 was identified, while MYC-C was upregulated. GSEA of independent gene sets associated with bivalent histone modification and polycomb group targets in embryonic stem cells demonstrated significant negative enrichment in RT. Several differentially expressed genes were associated with tumor suppression, invasion and metastasis, including SPP1 (osteopontin), COL18A1 (endostatin), PTPRK, and DOCK4. We conclude that RTs arise within early progenitor cells during a critical developmental window in which loss of SMARCB1 directly results in repression of neural development, loss of cyclin dependent kinase inhibition, and trithorax/polycomb dysregulation.
Rhabdoid tumor: gene expression clues to pathogenesis and potential therapeutic targets.
No sample metadata fields
View Samples