Hair follicle matrix, outer root sheath, dermal papilla cells and melanocytes and a dermal fraction enriched in fibroblasts were FACS isolated from 4d backskins. Targets from two biological replicates of each were generated and the expression profiles were determined using Affymetrix Mouse Genechip 430A arrays. Comparisons between the sample groups allow the identification of cell-type specific genes.
Molecular dissection of mesenchymal-epithelial interactions in the hair follicle.
No sample metadata fields
View SamplesThis SuperSeries is composed of the SubSeries listed below.
New IDH1 mutant inhibitors for treatment of acute myeloid leukemia.
Specimen part
View SamplesNeomorphic mutations in isocitrate dehydrogenase 1 (IDH1) are driver mutations in acute myeloid leukemia (AML) and other cancers. We report the development of new allosteric inhibitors of mutant IDH1. Crystallographic and biochemical results demonstrated that compounds of this chemical series bind to an allosteric site and lock the enzyme in a catalytically inactive conformation, thereby enabling inhibition of different clinically relevant IDH1 mutants. Treatment of IDH1 mutant primary AML cells uniformly led to a decrease in intracellular 2-HG, abrogation of the myeloid differentiation block and induction of granulocytic differentiation at the level of leukemic blasts and more immature stem-like cells, in vitro and in vivo. Molecularly, treatment with the inhibitors led to a reversal of the DNA cytosine hypermethylation patterns caused by mutant IDH1 in AML patients cells. Our study provides proof-of-concept for the molecular and biological activity of novel allosteric inhibitors for targeting different mutant forms of IDH1 in leukemia. To obtain insight into the molecular mechanism for the induction of granulocytic differentiation and cell death following inhibition of IDH1 mutant protein in primary AML cells, we performed gene expression microarrays following treatment with either GSK321 IDH1 inhibitor or Controls (DMSO or GSK990 inactive inhibitor).
New IDH1 mutant inhibitors for treatment of acute myeloid leukemia.
Specimen part
View Samples2H2O has a long history as a protein or amino acid labeling techinique, and such labeling systems have proven effective for many different types of studies. A disadvantage of a 2H2O labeling system is that plant growth is inhibited as the percentage of deuterium in the medium increases. However the molecular effects of 2H2O on plant growth has not previoulsly been investigated.
Measuring the turnover rates of Arabidopsis proteins using deuterium oxide: an auxin signaling case study.
Specimen part
View SamplesMitochondria are centers of metabolism and signaling whose content and function must adapt to changing cellular environments. The biological signals that initiate mitochondrial restructuring and the cellular processes that drive this adaptive response are largely obscure. To better define these systems, we performed matched quantitative genomic and proteomic analyses of mouse muscle cells as they performed mitochondrial biogenesis. We find that proteins involved in cellular iron homeostasis are highly coordinated with this process, and that depletion of cellular iron results in a rapid, dose-dependent decrease of select mitochondrial protein levels and oxidative capacity. We further show that this process is universal across a broad range of cell types and fully reversed when iron is reintroduced. Collectively, our work reveals that cellular iron is a key regulator of mitochondrial biogenesis, and provides quantitative datasets that can be leveraged to explore post-transcriptional and post-translational processes that are essential for mitochondrial adaptation.
Complementary RNA and protein profiling identifies iron as a key regulator of mitochondrial biogenesis.
Cell line, Treatment
View SamplesAberrations in genes coding for subunits of the BAF chromatin remodeling complex are highly abundant in human cancers. Currently, it is not understood how these loss-of-function mutations contribute to cancer development and how they can be targeted therapeutically. The cancer type specific occurrence patterns of certain subunit mutations suggest subunit-specific effects on BAF complex function, possibly by the formation of aberrant residual complexes. Here, we systematically characterize the effects of individual subunit loss on complex composition, chromatin accessibility and gene expression in a panel of knock-out cell lines deficient for 22 targetable BAF subunits. We observe strong, specific and often discordant alterations dependent on the targeted subunit and show that these explain intra-complex co-dependencies, including the novel synthetic lethal interactions SMARCA4-ARID2, SMARCA4-ACTB and SMARCC1-SMARCC2. These data provide insights into the role of different BAF subcomplexes in genome-wide chromatin organization and suggest novel approaches to therapeutically target BAF mutant cancers. Overall design: RNA-seq samples for knockouts of BAF complex in the HAP1 cell line.
Systematic characterization of BAF mutations provides insights into intracomplex synthetic lethalities in human cancers.
Cell line, Subject
View SamplesThe therapeutic potential of pro-resolution factors in determining the outcome of inflammatory events has gained ground over the past decade. However, the attention has been focused on the non-genomic effects of these endogenous, anti-inflammatory substances. In this study, we have focused our attention on identifying specific annexin 1 (AnxA1) protein/ALX receptor mediated gene activation, in an effort to identify down-stream genomic targets of this well-known, glucocorticoid induced, pro-resolution factor.
Downstream gene activation of the receptor ALX by the agonist annexin A1.
No sample metadata fields
View SamplesThe aim of this study was to analyze gene response to a 10-week dietary intervention for weight loss in peripheral blood mononuclear cells of overweight/obese male children.
Peripheral blood mononuclear cell gene expression profile in obese boys who followed a moderate energy-restricted diet: differences between high and low responders at baseline and after the intervention.
Sex, Age, Specimen part, Treatment
View SamplesMalignant melanoma is a complex genetic disease and the most aggressive form of skin cancer. Melanoma progression and metastatic dissemination fundamentally relies on the process of angiogenesis. Melanomas produce an array of angiogenic modulators that mediate pathological angiogenesis. Such tumor-associated modulators arbitrate the enhanced proliferative, survival and migratory responses exhibited by endothelial cells, in the hypoxic tumor environment. The current study focuses on melanoma-induced survival of endothelial cells under hypoxic conditions. Melanoma conditioned media were capable of enabling prolonged endothelial cell survival under hypoxia, in contrast with the conditioned media derived from melanocytes, breast and pancreatic tumors. To identify the global changes in gene expression and further characterize the pro-survival pathway induced in endothelial cells, we performed microarray analysis on endothelial cells treated with melanoma conditioned medium under normoxic and hypoxic conditions.
Melanomas prevent endothelial cell death under restrictive culture conditions by signaling through AKT and p38 MAPK/ ERK-1/2 cascades.
Specimen part
View SamplesHair Follicle regeneration relies on both epithelial components (bulge and hair germ cells) and a mesenchymal one (dermal papilla cells).
A two-step mechanism for stem cell activation during hair regeneration.
Specimen part
View Samples