The therapeutic potential of pro-resolution factors in determining the outcome of inflammatory events has gained ground over the past decade. However, the attention has been focused on the non-genomic effects of these endogenous, anti-inflammatory substances. In this study, we have focused our attention on identifying specific annexin 1 (AnxA1) protein/ALX receptor mediated gene activation, in an effort to identify down-stream genomic targets of this well-known, glucocorticoid induced, pro-resolution factor.
Downstream gene activation of the receptor ALX by the agonist annexin A1.
No sample metadata fields
View SamplesIn the present investigation, we have exploited the opportunity provided by neoadjuvant treatment of a group of postmenopausal women with large operable or locally advanced breast cancer (in which therapy is given with the primary tumour remaining within the breast) to take sequential biopsies of the same cancers before and after 10-14 days treatment with letrozole. RNA extracted from the biopsies has been subjected to Affymetrix microarray analysis and the data from paired biopsies interrogated to discover genes whose expression is most influenced by oestrogen deprivation.
Changes in breast cancer transcriptional profiles after treatment with the aromatase inhibitor, letrozole.
No sample metadata fields
View SamplesDefects in neutrophil number and survival are common to both hematologic disorders and chronic inflammatory diseases. At sites of inflammation, neutrophils respond to multiple signals that activate protein kinase A (PKA) signalling, which positively regulates neutrophil survival. We aimed to study the transcriptional responses to several stimuli in human neutrophils.
NR4A orphan nuclear receptor family members, NR4A2 and NR4A3, regulate neutrophil number and survival.
Specimen part
View SamplesProstate tumors are among the most heterogeneous of cancers, both histologically and clinically. Microarray expression analysis was used to determine whether global biological differences underlie common pathological features of prostate cancer and to identify genes that might anticipate the clinical behavior of this disease. While no expression correlates of age, serum prostate specific antigen (PSA), and measures of local invasion were found, a set of genes was identified that strongly correlated with the state of tumor differentiation as measured by Gleason score. Moreover, a model using gene expression data alone accurately predicted patient outcome following prostatectomy. These results support the notion that the clinical behavior of prostate cancer is linked to underlying gene expression differences that are detectable at the time of diagnosis.
Gene expression correlates of clinical prostate cancer behavior.
Specimen part
View SamplesTumorigenic breast cancer cells characterized by high CD44 and low or undetectable CD24 levels (CD44+/CD24-/low) may be resistant to conventional therapies and responsible for cancer relapse. We defined a signature expression pattern of hundreds of genes associated with CD44+/CD24-/low, mammosphere-forming cells. In a panel of patient breast tumors, this tumorigenic gene signature was found exclusively manifested in tumors of the recently identified claudin-low molecular profile subtype characterized by overexpression of many mesenchymal-associated genes, suggesting that these tumors have pre-existing higher levels of tumorigenic cells. Furthermore, when comparing the expression profiles of paired breast cancer core biopsies before versus after hormone therapy or chemotherapy, both the tumorigenic and claudin-low signatures were more active in about half of tumors after treatment, indicative of a greater enrichment of tumorigenic cells as a result of treatments targeting the bulk tumor cells.
Residual breast cancers after conventional therapy display mesenchymal as well as tumor-initiating features.
Sex, Specimen part, Treatment
View SamplesTumorigenic breast cancer cells characterized by CD44 expression and low or undetectable CD24 levels (CD44+/CD24-/low) may be resistant to chemotherapy and therefore responsible for cancer relapse. Paired breast cancer core biopsies before and after neoadjuvant chemotherapy or lapatinib were obtained and as single cell suspensions stained using antibodies against CD24, CD44, and lineage markers, and then analyzed by flow cytometry. Mammosphere (MS) formation in culture was compared before and after treatment. Global gene expression differences between cancer cells bearing CD44+/CD24-/low cells and all other sorted cells, and between cancer MS and the primary bulk invasive cancers were analyzed. We report that CD44+/CD24-/low tumorigenic breast cancer cells were intrinsically chemoresistant chemotherapy led to increased CD44+/CD24-/low cells, increased self-renewal capacity on MS assays, and enhanced tumorigeneicity in immunocompromised SCID/Beige mice. Conversely, in patients with HER2 overexpressing tumors, the EGFR/HER2 tyrosine kinase inhibitor, lapatinib decreased CD44+/CD24-/low cells, with the majority of these patients after conventional therapy achieving pathologic complete response, a validated surrogate marker for long-term survival. Gene transcription pathways that underlie chemoresistant, MS-forming CD44+/CD24-/low cells involve genes belonging to stem cell self-renewal, Wnt signaling, and early development pathways.
Residual breast cancers after conventional therapy display mesenchymal as well as tumor-initiating features.
No sample metadata fields
View SamplesTumorigenic breast cancer cells characterized by CD44 expression and low or undetectable CD24 levels (CD44+/CD24-/low) may be resistant to chemotherapy and therefore responsible for cancer relapse. Paired breast cancer core biopsies before and after neoadjuvant chemotherapy or lapatinib were obtained and as single cell suspensions stained using antibodies against CD24, CD44, and lineage markers, and then analyzed by flow cytometry. Mammosphere (MS) formation in culture was compared before and after treatment. Global gene expression differences between cancer cells bearing CD44+/CD24-/low cells and all other sorted cells, and between cancer MS and the primary bulk invasive cancers were analyzed. We report that CD44+/CD24-/low tumorigenic breast cancer cells were intrinsically chemoresistant chemotherapy led to increased CD44+/CD24-/low cells, increased self-renewal capacity on MS assays, and enhanced tumorigeneicity in immunocompromised SCID/Beige mice. Conversely, in patients with HER2 overexpressing tumors, the EGFR/HER2 tyrosine kinase inhibitor, lapatinib decreased CD44+/CD24-/low cells, with the majority of these patients after conventional therapy achieving pathologic complete response, a validated surrogate marker for long-term survival. Gene transcription pathways that underlie chemoresistant, MS-forming CD44+/CD24-/low cells involve genes belonging to stem cell self-renewal, Wnt signaling, and early development pathways.
Residual breast cancers after conventional therapy display mesenchymal as well as tumor-initiating features.
No sample metadata fields
View SamplesMitochondria are centers of metabolism and signaling whose content and function must adapt to changing cellular environments. The biological signals that initiate mitochondrial restructuring and the cellular processes that drive this adaptive response are largely obscure. To better define these systems, we performed matched quantitative genomic and proteomic analyses of mouse muscle cells as they performed mitochondrial biogenesis. We find that proteins involved in cellular iron homeostasis are highly coordinated with this process, and that depletion of cellular iron results in a rapid, dose-dependent decrease of select mitochondrial protein levels and oxidative capacity. We further show that this process is universal across a broad range of cell types and fully reversed when iron is reintroduced. Collectively, our work reveals that cellular iron is a key regulator of mitochondrial biogenesis, and provides quantitative datasets that can be leveraged to explore post-transcriptional and post-translational processes that are essential for mitochondrial adaptation.
Complementary RNA and protein profiling identifies iron as a key regulator of mitochondrial biogenesis.
Cell line, Treatment
View SamplesMalignant melanoma is a complex genetic disease and the most aggressive form of skin cancer. Melanoma progression and metastatic dissemination fundamentally relies on the process of angiogenesis. Melanomas produce an array of angiogenic modulators that mediate pathological angiogenesis. Such tumor-associated modulators arbitrate the enhanced proliferative, survival and migratory responses exhibited by endothelial cells, in the hypoxic tumor environment. The current study focuses on melanoma-induced survival of endothelial cells under hypoxic conditions. Melanoma conditioned media were capable of enabling prolonged endothelial cell survival under hypoxia, in contrast with the conditioned media derived from melanocytes, breast and pancreatic tumors. To identify the global changes in gene expression and further characterize the pro-survival pathway induced in endothelial cells, we performed microarray analysis on endothelial cells treated with melanoma conditioned medium under normoxic and hypoxic conditions.
Melanomas prevent endothelial cell death under restrictive culture conditions by signaling through AKT and p38 MAPK/ ERK-1/2 cascades.
Specimen part
View SamplesComplement inhibitor C4b-binding protein (C4BP) is synthesized in liver and pancreas and composed of 7 identical alpha chains and one unique beta chain. We showed previously that C4BP binds islet amyloid polypeptide (IAPP) and affects fibril formation in vitro. Now we found that polymeric C4BP inhibited lysis of human erythrocytes incubated with monomeric IAPP while no erythrocyte lysis was observed after incubation with preformed IAPP fibrils. In contrast, monomeric alpha chain of C4BP had significantly reduced activity. Further, addition of monomeric IAPP to a rat insulinoma cell line (INS-1) resulted in decreased cell viability, which was restored in the presence of physiological concentrations of C4BP. Accordingly, addition of C4BP rescued the ability of INS-1 cells and isolated rat islets to respond to glucose stimulation with insulin secretion, which was impaired in the presence of IAPP alone. C4BP was internalized together with IAPP into INS-1 cells and therefore we aimed to study its effect on gene expression. Pathway analyses of mRNA expression microarray data indicated that cells exposed to C4BP and IAPP in comparison to IAPP alone increased expression of genes involved in cholesterol synthesis. Depletion of cholesterol through methyl--cyclodextrin or cholesterol oxidase abolished the protective effect of C4BP on IAPP cytotoxicity of INS-1 cells. Also, inhibition of phosphoinositide 3-kinase but not NF-B had a similar effect. Taken together, one of the mechanisms by which C4BP protects beta-cells from IAPP cytotoxicity is by enhancing cholesterol synthesis.
C4b-binding Protein Protects β-Cells from Islet Amyloid Polypeptide-induced Cytotoxicity.
Specimen part, Cell line
View Samples