The clinical efficacy of EGFR kinase inhibitors gefitinib and erlotinib is limited by the development of drug resistance. The most common mechanism of drug resistance is the secondary EGFR T790M mutation. Strategies to overcome EGFR T790M mediated drug resistance include the use of mutant selective EGFR inhibitors, including WZ4002, or by the use of high concentrations of irreversible quinazoline EGFR inhibitors such as PF299804. In the current study we develop drug resistant versions of the EGFR mutant PC9 cell line which reproducibly develops EGFR T790M as a mechanism of drug resistance to gefitinib. Neither PF299804 resistant (PFR) or WZ4002 resistant (WZR) clones of PC9 harbor EGFR T790M. Instead, they demonstrate activated IGF1R signaling as a result of loss of expression of IGFBP3 and the IGF1R inhibitor, BMS 536924, restores EGFR inhibitor sensitivity. Intriguingly, prolonged exposure to either PF299804 or WZ4002 results in the emergence of a more drug resistant subclone which contains ERK activation. A MEK inhibitor, CI-1040, partially restores sensitivity to EGFR/IGF1R inhibitor combination. Moreover, an IGF1R or MEK inhibitor used in combination with either PF299804 or WZ4002 completely prevents the emergence of drug resistant clones in this model system. Our studies suggest that more effective means of inhibiting EGFR T790M will prevent the emergence of this common drug resistance mechanism in EGFR mutant NSCLC. However, multiple drug resistance mechanisms can still emerge. Preventing the emergence of drug resistance, by targeting pathways activated in resistant cancers before they emerge, may be a more effective clinical strategy.
Resistance to irreversible EGF receptor tyrosine kinase inhibitors through a multistep mechanism involving the IGF1R pathway.
Specimen part
View SamplesThis SuperSeries is composed of the SubSeries listed below.
Reactivation of ERK signaling causes resistance to EGFR kinase inhibitors.
Cell line
View SamplesThe clinical efficacy of EGFR kinase inhibitors is limited by the development of drug resistance. The irreversible EGFR kinase inhibitor WZ4002 is effective against the most common mechanism of drug resistance mediated by the EGFR T790M mutation. Here we show that in multiple complementary models harboring EGFR T790M, resistance to WZ4002 develops through aberrant activation of ERK signaling caused by either an amplification of MAPK1 or by downregulation of negative regulators of ERK signaling. Inhibition of MEK or ERK restores sensitivity to WZ4002, and the combination of WZ4002 and a MEK inhibitor prevents the emergence of drug resistance. The WZ4002 resistant MAPK1 amplified cells also demonstrate an increase both in EGFR internalization and a decrease in sensitivity to cytotoxic chemotherapy compared to the parental counterparts. Our findings provide insights into mechanisms of drug resistance to EGFR kinase inhibitors and highlight rational combination therapies that should be evaluated in clinical trials.
Reactivation of ERK signaling causes resistance to EGFR kinase inhibitors.
Cell line
View SamplesIn this randomised placebo-controlled trial, irritable bowel syndrome (IBS) patients were treated with faecal material from a healthy donor (n=8, allogenic FMT) or with their own faecal microbiota (n=8, autologous FMT). The faecal transplant was administered by whole colonoscopy into the caecum (30 g of stool in 150 ml sterile saline). Two weeks before the FMT (baseline) as well as two and eight weeks after the FMT, the participants underwent a sigmoidoscopy, and biopsies were collected at a standardised location (20-25 cm from the anal verge at the crossing with the arteria iliaca communis) from an uncleansed sigmoid. In patients treated with allogenic FMT, predominantly immune response-related genes sets were induced, with the strongest response two weeks after FMT. In patients treated with autologous FMT, predominantly metabolism-related gene sets were affected.
Allogenic Faecal Microbiota Transfer Induces Immune-Related Gene Sets in the Colon Mucosa of Patients with Irritable Bowel Syndrome.
Age, Specimen part, Subject
View SamplesThis SuperSeries is composed of the SubSeries listed below.
Profiling translatomes of discrete cell populations resolves altered cellular priorities during hypoxia in Arabidopsis.
Age, Specimen part, Treatment
View SamplesPlant organs are comprised of distinct cell types with unique assemblages of mRNAs. This is a collection of CEL files of mRNA profiles of the total steady-state mRNAs and polysomal mRNAs of distinct cell types of the whole root and shoot of 7-d-old Arabidopsis thaliana seedlings. The cell type specific mRNA populations are those present in ribosome-mRNA complexes. This sub-population of mRNAs was obtained by first establishing a collection of Arabidopsis lines that express a FLAG-epitope tagged ribosomal protein L18 (RPL18) directed by promoters expressed in specific cell types and regions. Thirteen different promoter:FLAG-RPL18 lines were used. The targeted cell types and promoters included root atrichoblast (non-hair) epidermal cells (pGL2), root endodermis (pSCR), root stelar xylem and pericycle (pWOL, pSHR), root phloem companion cells (phloem CC) (pSUC2, pSultr2;2), root proliferating cells (pRPL11C), root cortex meristematic cells (pCO2), root cortex elongation/maturation cells (pPEP), shoot mesophyll (pRBCS), shoot epidermis (pCER5), shoot guard cells (pKAT1), shoot bundle sheath (pSultr2;2), shoot phloem CC (pSUC2) and shoot trichomes (pGL2). A CaMV 35S promoter:FLAG-RPL18 line was used to obtain the polysomal mRNA of multiple cell types. The immunopurification of ribosome-mRNA complexes of specific cell types/regions was accomplished by the method described in Zanetti et al. (Plant Physiology, 138, 624-635; 2005). Hybridization of the immunopurified mRNAs to the Affymetrix ATH1 DNA microarray platform and subsequent data analysis permitted the identification of transcripts that are enriched or depleted in specific cell types/regions of roots and shoots. The dataset includes samples from cell types/regions from seedlings grown under control conditions and cell types/regions of seedlings exposed to low oxygen stress (hypoxia) for 2 h.
Profiling translatomes of discrete cell populations resolves altered cellular priorities during hypoxia in Arabidopsis.
Age, Specimen part, Treatment
View SamplesPlant organs are comprised of distinct cell types with unique assemblages of mRNAs. This is a collection of CEL files of mRNA profiles of the total steady-state mRNAs and polysomal mRNAs of distinct cell types of the root tip of 7-d-old Arabidopsis thaliana seedlings. The cell type specific mRNA populations are those present in ribosome-mRNA complexes. This sub-population of mRNAs was obtained by first establishing a collection of Arabidopsis lines that express a FLAG-epitope tagged ribosomal protein L18 (RPL18) directed by promoters expressed in specific cell types and regions. Four different promoter:FLAG-RPL18 lines were used. The targeted cell types and promoters included root endodermis (pSCR) and root stelar xylem and pericycle (pWOL, pSHR). A CaMV 35S promoter:FLAG-RPL18 line was used to obtain the polysomal mRNA of multiple cell types. The immunopurification of ribosome-mRNA complexes of specific cell types was accomplished by the method described in Zanetti et al. (Plant Physiology, 138, 624-635; 2005). Hybridization of the immunopurified mRNAs to the Affymetrix ATH1 DNA microarray platform and subsequent data analysis permitted the identification of transcripts that are enriched or depleted in specific cell types of root tips. The dataset includes samples from cell types from seedlings grown under control conditions and cell types of seedlings exposed to low oxygen stress (hypoxia) for 2 h.
Profiling translatomes of discrete cell populations resolves altered cellular priorities during hypoxia in Arabidopsis.
Age, Specimen part, Treatment
View SamplesEstablishment of an in vitro system to explore molecular mechanisms of mastitis susceptibility in cattle by comparative expression profiling of Escherichia coli and Staphylococcus aureus inoculated primary cells sampled from cows with different genetic predisposition for somatic cell score
Comparative expression profiling of E. coli and S. aureus inoculated primary mammary gland cells sampled from cows with different genetic predispositions for somatic cell score.
Disease, Treatment, Time
View SamplesIdentification of genetic/cytogenetic alterations and differentially expressed cellular genes in HPV16 E6, E7 and E6/E7 positive human foreskin keratinocytes
Complementation of non-tumorigenicity of HPV18-positive cervical carcinoma cells involves differential mRNA expression of cellular genes including potential tumor suppressor genes on chromosome 11q13.
No sample metadata fields
View SamplesIdentification of genes differentially expressed in tumorigenic compared to non-tumorigenic, HPV18 positive cells
Complementation of non-tumorigenicity of HPV18-positive cervical carcinoma cells involves differential mRNA expression of cellular genes including potential tumor suppressor genes on chromosome 11q13.
No sample metadata fields
View Samples