refine.bio
  • Search
      • Normalized Compendia
      • RNA-seq Sample Compendia
  • Docs
  • About
  • My Dataset
github link
Showing 5 of 5 results
Sort by

Filters

Technology

Platform

accession-icon GSE32178
Identification of a Myometrial Molecular Profile for Dystocic Labor
  • organism-icon Homo sapiens
  • sample-icon 8 Downloadable Samples
  • Technology Badge Icon Affymetrix Human Genome U133 Plus 2.0 Array (hgu133plus2)

Description

This study identifies a transciptomic myometrial profile associated with dystocia in spontanous nulliparous term labour

Publication Title

Identification of a myometrial molecular profile for dystocic labor.

Sample Metadata Fields

Sex, Specimen part

View Samples
accession-icon SRP019968
Homo sapiens Transcriptome or Gene expression
  • organism-icon Homo sapiens
  • sample-icon 8 Downloadable Samples
  • Technology Badge IconIllumina HiSeq 2000

Description

RNA sequencing data for four cell lines representing different stages during malignant transformation.

Publication Title

Majority of differentially expressed genes are down-regulated during malignant transformation in a four-stage model.

Sample Metadata Fields

No sample metadata fields

View Samples
accession-icon GSE90696
Identification of evolutionary conserved gene networks that mediate neurodegenerative dementia
  • organism-icon Mus musculus, Homo sapiens
  • sample-icon 38 Downloadable Samples
  • Technology Badge Icon Affymetrix Mouse Genome 430 2.0 Array (mouse4302)

Description

This SuperSeries is composed of the SubSeries listed below.

Publication Title

Identification of evolutionarily conserved gene networks mediating neurodegenerative dementia.

Sample Metadata Fields

Age, Specimen part, Time

View Samples
accession-icon SRP149532
Genome wide analysis of SAHA (vorinostat) treatment in human iPSC-derived neurons from Tau A152T patients and controls
  • organism-icon Homo sapiens
  • sample-icon 35 Downloadable Samples
  • Technology Badge Icon

Description

Purpose: The goal of this study was to assess gene expression changes upon SAHA treatment in neurons derived from patients with A152T Tau mutation Overall design: iPSC derived neurons were treated with SAHA at different dosage for several days

Publication Title

Identification of evolutionarily conserved gene networks mediating neurodegenerative dementia.

Sample Metadata Fields

No sample metadata fields

View Samples
accession-icon SRP149533
Genome wide analysis of SAHA (vorinostat) treatment in primary mouse cortical neurons upon miR-203 overexpression
  • organism-icon Mus musculus
  • sample-icon 35 Downloadable Samples
  • Technology Badge IconIllumina HiSeq 4000

Description

Purpose: The goal of this study was to assess gene expression changes upon SAHA treatment in cells overexpressing miR-203. Overall design: Primary cortical cultures were established using E15 cortical cultures from C57BL/6J mice. At DIV0, cells were infectd with either miR-203 (high titre - 1MOI) or intermediate titre (0.5MOI) or control (high 1MOI) lentivirus andalso treated with different dose of SAHA. At DIV8, total RNA was isolated using NucleoSpin RNA XS kit (Takara). Libraries were prepared using Standard illumina stranded mRNA-seq protocol.

Publication Title

Identification of evolutionarily conserved gene networks mediating neurodegenerative dementia.

Sample Metadata Fields

Specimen part, Subject

View Samples
Didn't see a related experiment?

refine.bio is a repository of uniformly processed and normalized, ready-to-use transcriptome data from publicly available sources. refine.bio is a project of the Childhood Cancer Data Lab (CCDL)

fund-icon Fund the CCDL

Developed by the Childhood Cancer Data Lab

Powered by Alex's Lemonade Stand Foundation

Cite refine.bio

Casey S. Greene, Dongbo Hu, Richard W. W. Jones, Stephanie Liu, David S. Mejia, Rob Patro, Stephen R. Piccolo, Ariel Rodriguez Romero, Hirak Sarkar, Candace L. Savonen, Jaclyn N. Taroni, William E. Vauclain, Deepashree Venkatesh Prasad, Kurt G. Wheeler. refine.bio: a resource of uniformly processed publicly available gene expression datasets.
URL: https://www.refine.bio

Note that the contributor list is in alphabetical order as we prepare a manuscript for submission.

BSD 3-Clause LicensePrivacyTerms of UseContact