This SuperSeries is composed of the SubSeries listed below.
Oxygen regulation of breathing through an olfactory receptor activated by lactate.
Specimen part
View SamplesThe carotid body is a chemoreceptor that senses decreases in blood oxygen to increase breathing in hypoxia.
Oxygen regulation of breathing through an olfactory receptor activated by lactate.
Specimen part
View SamplesThe carotid body is a chemoreceptor that senses decreases in blood oxygen to increase breathing in hypoxia. To look for candidate oxygen sensors in the carotid body, we compared the gene expression of the carotid body to the adrenal medulla, a similar tissue that does not have oxygen sensitivity in adults. Overall design: For each sample, we pooled 18 carotid bodies and 10 adrenal medullas from 10 adult mice.
Oxygen regulation of breathing through an olfactory receptor activated by lactate.
Specimen part, Cell line, Subject
View SamplesThis SuperSeries is composed of the SubSeries listed below.
Plant cysteine oxidases control the oxygen-dependent branch of the N-end-rule pathway.
Age, Specimen part, Treatment
View SamplesThe effect of the overexpression of Plant Cysteine Oxidase (PDCO1) on the transcriptome of Arabidopsis resettes was investigated with plants subjected to a 4h hypoxia (5% O2 v/v in air). For this purpose, 4-week old rosette of wild-type and 35S:FLAG:CDO1 plants were compared. Samples were composed of pools of 5 plants.
Plant cysteine oxidases control the oxygen-dependent branch of the N-end-rule pathway.
Age, Specimen part
View SamplesThe effect of the overexpression of Plant Cysteine Oxidase (PCO1) on the transcriptome of Arabidopsis resettes was investigated. For this purpose, 4-week old rosette of wild-type and 35S:FLAG:CDO1 plants were compared. Samples were composed of a pool of 5 plants.
Plant cysteine oxidases control the oxygen-dependent branch of the N-end-rule pathway.
Age, Specimen part, Treatment
View SamplesWe investigated the ALDH2*2 genetic polymorphism and its underlying mechanisms for the first time in a human model system of induced pluripotent stem cell-derived cardiomyocytes (iPSC-CMs) generated from individuals carrying the most common heterozygous form of the ALDH2*2 genotype. We showed that the ALDH2*2 mutation confers elevated levels of reactive oxygen species (ROS) and toxic aldehydes such as 4HNE, thereby inducing cell cycle arrest and activation of apoptotic signaling pathways, especially during ischemic injury. ALDH2 exerts control of cell survival decisions via modulation of oxidative stress levels. This regulatory circuitry was found to be dysfunctional in the loss-of-function ALDH2*2 genotype, causing upregulation of apoptosis in cardiomyocytes following ischemic insult. These results reveal a novel function of the metabolic enzyme ALDH2 in modulation of cell survival decisions. Overall design: Molecular mechanism of increased ischemic damage in cardiomyocytes of ALDH2*2 genotype.
Characterization of the molecular mechanisms underlying increased ischemic damage in the aldehyde dehydrogenase 2 genetic polymorphism using a human induced pluripotent stem cell model system.
No sample metadata fields
View SamplesHydrogen peroxide is known to promote skin keratinocyte migration, although the mechanism of action is unclear. In an attempt to identify signaling pathways regulated by hydrogen peroxide in the skin, 3 day post fertilized (dpf) zebrafish larvae (nacre strain) were treated with 3mM hydrogen peroxide for 2 hours and subjected to RNA-seq analyses. Pools of about 1000 embryos for each of three biological replicates were derived from 5 independent mating pairs and raised to larval stages until 3 dpf. All larvae were subsequently homogenized in Trizol and total RNA was extracted using a chloroform extraction protocol treated with DNAse. Messenger RNA (mRNA) was subsequently purified from total RNA using biotin-tagged poly dT oligonucleotides and streptavidin-coated magnetic beads, followed by quality control using an Agilent Technologies 2100 Bioanalyzer (values >7 were used for sequencing). The poly(A)-tailed mRNA samples were fragmented and double-stranded cDNA generated by random priming for deep sequencing studies. Overall design: 6 samples total were analyzed. 3 untreated, and 3 hydrogen peroxide treated (3mM, 2hr)
Comparative transcriptomic profiling of hydrogen peroxide signaling networks in zebrafish and human keratinocytes: Implications toward conservation, migration and wound healing.
No sample metadata fields
View SamplesDerivation and expansion of human umbilical cord blood-derived endothelial colony forming cells under serum-free conditions - a transcriptome analysis.
Optimization of the culturing conditions of human umbilical cord blood-derived endothelial colony-forming cells under xeno-free conditions applying a transcriptomic approach.
Specimen part
View SamplesGM-CSF controls the development of granulocytes but little is known about the contribution of the downstream mediating transcription factor STAT5A/B. To elucidate this pathway, we generated mice lacking the Stat5a and 5b genes in blood cells. Peripheral neutrophils were decreased and administration of 5-FU and GM-CSF failed to induce granulopoiesis in Stat5a/b-mutant mice. GMPs were isolated and cultured with GM-CSF. Both the number and size of STAT5A/B-null colonies were reduced and GM-CSF-induced survival of mature STAT5A/B-null neutrophils was impaired. Time-lapse cinematography and single cell tracking of GMPs revealed that STAT5A/B-null cells were characterized by a longer generation time and an increased cell death. Gene expression profiling experiments suggested that STAT5A/B directs GM-CSF signaling through the regulation of cell survival genes.
The transcription factors STAT5A/B regulate GM-CSF-mediated granulopoiesis.
No sample metadata fields
View Samples