Purpose: The retinal pigment epithelium (RPE) forms the outer blood-retinal barrier. Primary cultures of RPE can model the barrier, but are very sensitive to culture conditions. We examined how the neural retina regulates the RPE transcriptome in a culture model of embryonic development. Attention focused on the tight junctional genes essential for barrier function.
Diffusible retinal secretions regulate the expression of tight junctions and other diverse functions of the retinal pigment epithelium.
No sample metadata fields
View SamplesPurpose: The morphology of the RPE shows minimal change as the neural retina and choriocapillaris differentiate. Nonetheless, initial studies of barrier-related proteins suggest extensive remodeling of the RPE in response to this changing environment. A genomic approach was used to investigate the extent of this remodeling.
Analysis of the RPE transcriptome reveals dynamic changes during the development of the outer blood-retinal barrier.
No sample metadata fields
View SamplesMultiple myeloma (MM)-induced osteoclast (OC) formation occurs in close contact with MM cell infiltration into the bone marrow (BM) due to the imbalance of the receptor activator of NF-kappa-B ligand (RANKL)/osteoprotegerin (OPG) ratio in favor of RANKL in the micorenvironment. Soluble factors including CCL3/MIP-1?, IL7 and IL-3 also contribute to the increased OC formation in MM.The immunomodulatory drugs (IMiDs) directly inhibit OCs, however their effect on the mechanisms involved in MM-induced OC formation are not known and have been investigated in this study. We found that both Lenalidomide (LEN) and Pomalidomide (POM), at concentration ranging reached in vivo, significantly blunted RANKL up-regulation normalizing the RANKL/OPG ratio in human BM osteoprogenitor cells (PreOBs) co-cultured with MM cells and inhibited CCL3/MIP-1? production by MM cells. The reduction of CD49d expression on MM cells, a molecule critically involved in RANKL up-regulation in the micorenvironment, accompanied this effect. Consistently the pro-osteoclastogenic property of the conditioned medium of MM cells co-cultured with PreOBs was reduced in the presence of both IMiDs. By microarray analysis we further investigated the effect of POM and LEN on the transcriptional profile of both MM cells and PreOBs. We found a significant down-regulation in MM cells, in addition to CD49d, of genes belonging to the adhesion molecules family such as ITGA8 and ICAM2 (CD102) induced by both IMiDs compounds. In conclusion our data suggest that POM and LEN inhibits MM-induced OC formation through the inhibition of RANKL/OPG ratio targeting the expression of adhesion molecules by MM cells.
Immunomodulatory drugs lenalidomide and pomalidomide inhibit multiple myeloma-induced osteoclast formation and the RANKL/OPG ratio in the myeloma microenvironment targeting the expression of adhesion molecules.
Cell line, Treatment
View SamplesAnalysis of gene-probe expression data (FPKM) for mouse skin using single-end read RNA-seq Overall design: RNA was collected and analyzed for 2 biological replicates each from 3 developmental stages (E18.5, P3, 10 weeks)
RNA-seq studies reveal new insights into p63 and the transcriptomic landscape of the mouse skin.
No sample metadata fields
View SamplesIn vitro experiment of stimulation of monocyte-derived dendritic cells with Saccaromyces cerevisiae in exponential growth phase. This experiment was performed to verify the comparability of microarray
Using pathway signatures as means of identifying similarities among microarray experiments.
No sample metadata fields
View SamplesTo gain insight into the dynamic molecular processes that are altered during prolonged wakefulness and during sleep. We performed an RNA expression profiling study examining temporal changes in the brain of Drosophila in relationship to the duration of prior sleep or wakefulness. Our experimental design allowed us to determine whether genes identified as differentially regulated between sleep and wakefulness were up- or down-regulated in these states.
Multiple mechanisms limit the duration of wakefulness in Drosophila brain.
Sex, Age, Specimen part
View SamplesOcular immune privilege (IP) limits immune surveillance of intraocular tumors as certain immunogenic tumor cell lines (P815, E.G7-OVA) that are rejected when transplanted in the skin grow progressively when placed in the anterior chamber (a.c.) of the eye. As splenectomy (SPLNX) is known to terminate ocular IP, we characterized immune mechanisms responsible for spontaneous rejection of intraocular tumors in SPLNX mice as a first step toward identifying how to restore tumoricidal activity within the eye. Microarray data showed a 3-fold increase in interferon (IFN)- and a 2.7-fold increase in Fas ligand (FasL). There was a robust increase in transcripts (127 of 408 surveyed) from interferon (IFN)-stimulated genes and a marked decrease (in 40 of 192 surveyed) in the expression of cell-cycle-associated genes. Non-microarray data confirmed that IFN, FasL and CD8+ T cells but not perforin or TNF were required for elimination of intraocular E.G7-OVA tumors that culminated in destruction of the eye (ocular phthsis). IFN and FasL did not target tumor cells directly as the majority of SPLNX IFNR1-/- mice and Fas-defective lpr mice failed to eliminate ocular E.G7-OVA tumors that expressed Fas and IFNR1. Bone marrow chimeras showed that immune cell expression of IFNR1 and Fas was critical and that SPLNX increased the frequency of activated macrophages within ocular tumors in an IFN- and Fas/FasL-dependent manner. Rejection of intraocular tumors was associated with increased ocular mRNA expression of several inflammatory genes including FasL, NOS2, CXCL2 and T-bet. Our data support a model in which IFN- and Fas/FasL-dependent activation of intratumoral macrophage by CD8+ T cells promotes severe intraocular inflammation that indirectly eliminates intraocular tumors by inducing phthisis. The immunosuppressive mechanisms which maintain ocular IP likely interfere with the interaction between CD8+ T cells and macrophage to limit immunosurveillance of intraocular tumors.
Splenectomy promotes indirect elimination of intraocular tumors by CD8+ T cells that is associated with IFNγ- and Fas/FasL-dependent activation of intratumoral macrophages.
Specimen part, Treatment
View SamplesIn this work, we showed that the re-expression of miR-26a in DU-145 prostate cancer cells restored the tumor suppressor activity of miR-26a. To discover the genes and pathways elicited by miR-26a re-expression, we used the miRNA pull out assay to capture and the Next Generation Sequencing to identify the miR-26a targets. Data showed that: i) miR-26a captured both non-coding and coding RNAs; ii) 46% of transcripts were putative miR-26a targets according to target prediction algorithms; iii) 21 pathways were significantly enriched and the “Pathway in Cancer” was among those comprising the largest number of genes, including BIRC5 that we experimentally validated. Accordingly, the detection of cell proliferation-related events showed that miR-26a exerted its tumor suppressor activity at several levels, by decreasing the survival, impairing the migration of tumor cells and by inducing both apoptosis and cell cycle block. In conclusion, we showed that the collection of miR-26a interacting transcripts (miR-26a/targetome) represented a fruitful platform to decipher the miR-26a-dependent gene expression networks. In perspective the availability of miRNA-specific and tumor-specific targetomes will allow the discovery of new druggable tumor genes and pathways. Overall design: The miRNA pull out assay was performed modifying the protocol described by Orom et al. {Methods 43, 162-165, doi:S1046-2023(07)00097-7}. DU-145 were seeded into the wells of a 6-well at the density of 1.5 x105. After 24 hours from seeding, cells were transfected using lipofectamine (Thermo Fisher) with 60nM of either miR-26a duplex (ds-miR-26aCT) or a mix of 3' biotin-tagged miR-26a 7tU (nucleotide 7 was a thiouridine) and miR-26a 17tU duplexes (ds-miR-26aBIO). The day after transfection, the cells were washed with PBS and irradiated with UV (365nm, 2J/cm2), using the Bio-Link crosslinking (BLX) (Ambrose Lourmat) with appropriate UV lamps, to induce cross-linking of tU nucleotides to RNA. Total RNA was extracted adding directly on adherent cells TRIzol reagent (Thermo Fisher) and following the instructions provided by the manufacturer. After DNAse treatment, 15 µg of RNA was incubated for 4 hrs at 4°C with 100 µl of streptavidin-conjugated beads (200 µl of Streptavidin Sepharose high performance, GE Healthcare) previously suspended in PO buffer (1M Tris pH8, 5M NaCl, 1M MgCl2, NP40 50 µl in 100 ml buffer). After 2 washes with PO buffer and 2 washes with DEPC-treated water, the RNA complexed with beads was recovered by adding 1 ml Trizol directly on the beads and then following the TRIzol RNA extraction protocol. We performed two biological replicates obtaining two miR-26aCT (control) and two miR-26aBIO (miR-26a) pull out samples. The RNA isolated after the miRNA pullout procedure from both miR-26aCT and miR-26aBIO samples was used for the construction of the cDNA libraries using the TruSeq Stranded Total RNA Sample Preparation kit (Illumina) according to the manufacturer's suggestions. cDNA libraries were sequenced by HiSeq2000 (Illumina) in single-reads mode (50bp) by IGA Technology Service, Udine, Italy, obtaining about 20 million of reads for each samples.
Discovering the miR-26a-5p Targetome in Prostate Cancer Cells.
Specimen part, Cell line, Subject
View SamplesWe report a novel modular pipeline (iMir) for comprehensive analysis of miRNA-Seq data, from linker removal and sequence quality check to differential expression and biological target prediction, integrating multiple open source modules and resources linker together in an automated flow. Overall design: Development of an integrated pipeline (iMir) for comprehensive analysis of miRNA-Seq experiment.
iMir: an integrated pipeline for high-throughput analysis of small non-coding RNA data obtained by smallRNA-Seq.
Specimen part, Cell line, Subject
View SamplesEstrogens play an important role in breast cancer (BC) development and progression, where the two isoforms of the estrogen receptor (ERa and ERß) are generally co-expressed and mediate the effects of these hormones in cancer cells. ERß has been suggested to exert an antagonist role toward the oncogenic activities of ERa, and for this reason it is considered an oncosuppressor. As clinical evidence regarding a prognostic role for this receptor subtype in hormone-responsive BC is still limited and conflicting, more knowledge is required on the biological functions of ERß in cancer cells. We described previously the ERß and ERa interactomes of BC cells, identifying specific and distinct patterns of protein interactions for the two receptors. In particular, we identified factors involved in mRNA splicing and maturation as important components of both ERa and ERß pathways. Guided by these findings, we investigated here in depth the differences in the early transcriptional events and RNA splicing patterns induced in ERa vs ERa+ERß cells, by expressing ERß in ERa+ human BC MCF-7 cells. High-throughput mRNA sequencing was then performed in both cell lines after stimulation with 17b-estradiol, and the results obtained were compared. Overall design: We investigated here in depth the differences in the early transcriptional events and RNA splicing patterns induced in ERa vs ERa+ERß cells, by expressing ERß in ERa+ human BC MCF-7 cells. High-throughput mRNA sequencing was then performed in both cell lines after stimulation with 17b-estradiol, and the results obtained were compared.
Estrogen receptor beta impacts hormone-induced alternative mRNA splicing in breast cancer cells.
No sample metadata fields
View Samples