Lineage tracing provides unprecedented insights into the fate of individual cells and their progeny in complex organisms. While effective genetic approaches have been developed in vitro and in animal models, these cannot be used to interrogate human physiology in vivo. Instead, naturally occurring somatic mutations have been utilized to infer clonality and lineal relationships between cells in human tissues, but current approaches are limited by high error rates and scale, and provide little information about the state or function of the cells. Here, we show how somatic mutations in mitochondrial DNA (mtDNA) can be tracked by current single cell RNA-Seq (scRNA-Seq) or single cell ATAC-Seq (scATAC-Seq) for simultaneous analysis of single cell lineage and state. We leverage somatic mtDNA mutations as natural genetic barcodes and demonstrate their use as clonal markers to infer lineal relationships. We trace the lineage of human cells by somatic mtDNA mutations in a native context both in vitro and in vivo, and relate it to expression profiles and chromatin accessibility. Our approach should allow lineage tracing at a 100- to 1,000-fold greater scale than with single cell whole genome sequencing, while providing information on cell state, opening the way to chart detailed cell lineage and fate maps in human health and disease. Overall design: A population of 25 transfected TF1 cells were expanded and forwarded to a combination of 1) ATAC-seq and single cell RNA-seq. The single-cell RNA-seq data are listed here. Meta data includes heteroplasmic variant information per cell as well as the group assigned based on the lentiviral barcoding
Lineage Tracing in Humans Enabled by Mitochondrial Mutations and Single-Cell Genomics.
No sample metadata fields
View SamplesLineage tracing provides unprecedented insights into the fate of individual cells and their progeny in complex organisms. While effective genetic approaches have been developed in vitro and in animal models, these cannot be used to interrogate human physiology in vivo. Instead, naturally occurring somatic mutations have been utilized to infer clonality and lineal relationships between cells in human tissues, but current approaches are limited by high error rates and scale, and provide little information about the state or function of the cells. Here, we show how somatic mutations in mitochondrial DNA (mtDNA) can be tracked by current single cell RNA-Seq (scRNA-Seq) or single cell ATAC-Seq (scATAC-Seq) for simultaneous analysis of single cell lineage and state. We leverage somatic mtDNA mutations as natural genetic barcodes and demonstrate their use as clonal markers to infer lineal relationships. We trace the lineage of human cells by somatic mtDNA mutations in a native context both in vitro and in vivo, and relate it to expression profiles and chromatin accessibility. Our approach should allow lineage tracing at a 100- to 1,000-fold greater scale than with single cell whole genome sequencing, while providing information on cell state, opening the way to chart detailed cell lineage and fate maps in human health and disease. A variety of experimental designs using cells derived from both in vitro and in vivo to determine the efficacy of using mtDNA mutations in human clonal tracing. Overall design: A population of 30 primary hematopoietic cells were expanded and forwarded to a combination of ATAC-seq and single cell RNA-seq. single cell RNA-seq samples are listed here.
Lineage Tracing in Humans Enabled by Mitochondrial Mutations and Single-Cell Genomics.
No sample metadata fields
View SamplesLineage tracing provides unprecedented insights into the fate of individual cells and their progeny in complex organisms. While effective genetic approaches have been developed in vitro and in animal models, these cannot be used to interrogate human physiology in vivo. Instead, naturally occurring somatic mutations have been utilized to infer clonality and lineal relationships between cells in human tissues, but current approaches are limited by high error rates and scale, and provide little information about the state or function of the cells. Here, we show how somatic mutations in mitochondrial DNA (mtDNA) can be tracked by current single cell RNA-Seq (scRNA-Seq) or single cell ATAC-Seq (scATAC-Seq) for simultaneous analysis of single cell lineage and state. We leverage somatic mtDNA mutations as natural genetic barcodes and demonstrate their use as clonal markers to infer lineal relationships. We trace the lineage of human cells by somatic mtDNA mutations in a native context both in vitro and in vivo, and relate it to expression profiles and chromatin accessibility. Our approach should allow lineage tracing at a 100- to 1,000-fold greater scale than with single cell whole genome sequencing, while providing information on cell state, opening the way to chart detailed cell lineage and fate maps in human health and disease. A variety of experimental designs using cells derived from both in vitro and in vivo to determine the efficacy of using mtDNA mutations in human clonal tracing. Overall design: Individually sorted cells from clonally derived TF1 clones (C9, D6, and G10) were processed with single cell RNA-seq (Smart-seq2)
Lineage Tracing in Humans Enabled by Mitochondrial Mutations and Single-Cell Genomics.
Specimen part, Cell line, Subject
View SamplesLineage tracing provides unprecedented insights into the fate of individual cells and their progeny in complex organisms. While effective genetic approaches have been developed in vitro and in animal models, these cannot be used to interrogate human physiology in vivo. Instead, naturally occurring somatic mutations have been utilized to infer clonality and lineal relationships between cells in human tissues, but current approaches are limited by high error rates and scale, and provide little information about the state or function of the cells. Here, we show how somatic mutations in mitochondrial DNA (mtDNA) can be tracked by current single cell RNA-Seq (scRNA-Seq) or single cell ATAC-Seq (scATAC-Seq) for simultaneous analysis of single cell lineage and state. We leverage somatic mtDNA mutations as natural genetic barcodes and demonstrate their use as clonal markers to infer lineal relationships. We trace the lineage of human cells by somatic mtDNA mutations in a native context both in vitro and in vivo, and relate it to expression profiles and chromatin accessibility. Our approach should allow lineage tracing at a 100- to 1,000-fold greater scale than with single cell whole genome sequencing, while providing information on cell state, opening the way to chart detailed cell lineage and fate maps in human health and disease. A variety of experimental designs using cells derived from both in vitro and in vivo to determine the efficacy of using mtDNA mutations in human clonal tracing. Overall design: Cells from 3 separate TF1 clones (C9, D6, and G10) were processed with bulk RNA-seq (Smart-seq2)
Lineage Tracing in Humans Enabled by Mitochondrial Mutations and Single-Cell Genomics.
Specimen part, Cell line, Subject
View SamplesA great number of studies have investigated changes induced by morphine exposure in gene expression using several experimental models. In this study, we examined gene expression changes during chronic exposure to morphine during maturation and differentiation of zebrafish CNS.
Whole-genome expression profile in zebrafish embryos after chronic exposure to morphine: identification of new genes associated with neuronal function and mu opioid receptor expression.
Treatment
View SamplesThis SuperSeries is composed of the SubSeries listed below.
Cinacalcet inhibits neuroblastoma tumor growth and upregulates cancer-testis antigens.
Specimen part, Treatment
View SamplesCaSR modulation inhibits neuroblastoma growth
Cinacalcet inhibits neuroblastoma tumor growth and upregulates cancer-testis antigens.
Specimen part, Treatment
View SamplesCaSR modulation inhibits neuroblastoma growth
Cinacalcet inhibits neuroblastoma tumor growth and upregulates cancer-testis antigens.
Specimen part, Treatment
View SamplesWe used RNA sequencing to study gene expression in lymph node derived DCs from anaphylactic mice sensitized intranasally with the major peach allergen Pru p 3, during the acute reaction phase, induced intraperitoneally. In total, 237 genes changed significantly, 181 showing at least two-fold changes. Almost three quarters of these increased during anaphylaxis Overall design: 5 Female Balb/c mice aged 4-5 weeks, were sensitized to peach using intranasally administered Pru p 3 in combination with LPS and challenged intraperitoneally as described previously . 5 Littermates, treated with intranasally administered PBS (instead of Pru p 3 and LPS), and later given an intraperitoneal challenge as per the anaphylactic mice, were used for comparison.
Transcriptional Profiling of Dendritic Cells in a Mouse Model of Food-Antigen-Induced Anaphylaxis Reveals the Upregulation of Multiple Immune-Related Pathways.
Sex, Cell line, Treatment, Subject
View SamplesDocetaxel is the standard first line therapy for hormone-refractory prostate cancer patients. Here we generated models of Docetaxel resistance in prostate cancer cells to study the molecular pathways that drive the acquisition of resistance to this therapy. We used microarrays to detail the global program of gene expression underlying the acquisition of Docetaxel resistance in prostate cancer cells.
Suppression of acquired docetaxel resistance in prostate cancer through depletion of notch- and hedgehog-dependent tumor-initiating cells.
Specimen part, Cell line
View Samples