In this study we conducted transcriptomics analyses of: (i) liver samples from patients suffering from acetaminophen-induced acute liver failure (n=3) and from healthy livers (n=2) and (ii) hepatic cell systems exposed to acetaminophen, including their respective vehicle controls. The investigated in vitro systems are: HepaRG cells, HepG2 cells and a novel human skinpostnatal stem cell-derived model i.e. human skin-precursors-derived hepatocyte-like cells (hSKP-HPC).
Gene expression data from acetaminophen-induced toxicity in human hepatic <i>in vitro</i> systems and clinical liver samples.
Specimen part, Disease stage, Cell line
View SamplesMaintenance of intestinal homeostasis requires a healthy relationship between the commensal gut microbiota and the host immune system. Breast milk supplies the first source of antigen-specific immune protection in the gastrointestinal tract of suckling mammals, in the form of secretory immunoglobulin A (SIgA). SIgA is transported across glandular and mucosal epithelial cells into external secretions by the polymeric immunoglobulin receptor (pIgR). Here, a breeding scheme with pIgR-sufficient and -deficient mice was used to study the effects of breast milk-derived SIgA on development of the gut microbiota and host intestinal immunity. Early exposure to maternal SIgA prevented the translocation of aerobic bacteria from the neonatal gut into draining lymph nodes, including the opportunistic pathogen Ochrobactrum anthropi. By the age of weaning, mice that received maternal SIgA in breast milk had a significantly different gut microbiota from mice that did not receive SIgA, and these differences were magnified when the mice reached adulthood. Early exposure to SIgA in breast milk resulted in a pattern of intestinal epithelial cell gene expression in adult mice that differed from that of mice that were not exposed to passive SIgA, including genes associated with intestinal inflammatory diseases in humans. Maternal SIgA was also found to ameliorate colonic damage caused by the epithelial-disrupting agent dextran sulfate sodium. These findings reveal unique mechanisms through which SIgA in breast milk may promote lifelong intestinal homeostasis, and provide additional evidence for the benefits of breastfeeding.
Secretory antibodies in breast milk promote long-term intestinal homeostasis by regulating the gut microbiota and host gene expression.
Specimen part
View SamplesHuman skin-derived precursor cells (hSKP) are a post natal stem cell population isolated from the dermis. These cells acquire hepatic characteristics upon differentiation with hepatogenic factors. Differentiated hSKP show characteristics of hepatocyte precursor cells and respond to hepatotoxic compounds in a comparable way as human hepatocyte cultures.
In vitro assessment of drug-induced liver steatosis based on human dermal stem cell-derived hepatic cells.
Sex, Specimen part
View SamplesAt present, substantial efforts are focused on the development of in vitro assays coupled with omics technologies for the identification of carcinogenic substances as an alternative to the classical 2-year rodent carcinogenicity bioassay. A prerequisite for the eventual regulatory acceptance of such assays, however, is the in vivo relevance of the observed in vitro findings.
Comparison of hepatocarcinogen-induced gene expression profiles in conventional primary rat hepatocytes with in vivo rat liver.
Specimen part
View SamplesHuman skin-derived precursor cells (hSKP) are a stem cell population that represents key candidates for cell based-therapy. Inflammation, however, is often present in situations where cellular replacement therapy is required. These inflammatory conditions, and more specifically the presence of the cytokine interferon (IFN)-, might result in an increase of MHC class II antigens in hSKP-derived grafts and facilitate their rejection.
Human skin-derived precursor cells are poorly immunogenic and modulate the allogeneic immune response.
Sex, Age, Specimen part
View SamplesFor assessing the cancer-causing potential for humans of a chemical compound, the conventional approach is the use of the 2-year rodent carcinogenicity bioassay, thus alternatives such as in vitro toxicogenomics are highly desired. In the present study, the transcriptomics responses following exposure to genotoxic (GTX) and non-genotoxic (NGTX) hepatocarcinogens and non-carcinogens (NC) in five liver-based in vitro models, namely conventional and epigenetically-stabilized cultures of primary rat hepatocytes, the human hepatoma-derived HepaRG and HepG2 cell lines and the human embryonic stem cell-derived hepatocyte-like cells hES-Heps are examined and compared.
Transcriptomic responses generated by hepatocarcinogens in a battery of liver-based in vitro models.
Specimen part, Cell line, Treatment
View SamplesBRAF oncogene is mutated in ~50% of human cutaneous melanomas. The BRAF V600E mutation leads to constitutive activation of the mitogen-activated protein kinase (MAPK) pathway fuelling cancer growth. The inhibitors of BRAF V600E (BRAFi), lead to massive and high response rate. However, BRAFi-resistant cells that operate as a cellular reservoir for relapses severely limits the duration of the clinical response. The recent depiction of these resistant cells did not identify druggable targets to ensure long-term survival under BRAFi. Here, we identify the aryl hydrocarbon receptor (AhR) as a target to eradicate resistant cells. We show that BRAFi bind to AhR on a new site, named beta-pocket, and reprogram gene expression independently of its partner ARNT. beta-pocket activation induces a pigmentation signature, which is associated to BRAFi-induced cell death of sensitive BRAF V600E melanoma cells and tumour shrinkage. Intriguingly, in resistant cells, BRAFi does not induced a pigmentation signature since these cells display another AhR program; AhR-ARNT dependant. By this way, AhR directs several key BRAFi-resistant genes. At single cell level, this constitutive activation of AhR-ARNT is identified in rare cells before BRAFi-treatment of melanoma tumours and an enrichment of these alpha-cells is observed under BRAFi. Our data strongly suggest that an endogenous AhR ligand activates AhR-ARNT via the canonical AhR pocket (alpha-pocket), thus favouring BRAFi-resistant gene expression. Importantly, we identify the clinically compatible AhR antagonist, the resveratrol (RSV), able to abrogate the deleterious constitutive activation of AhR and to reduce the cellular reservoir for the relapse. Taken together, this work reveals that constitutive AhR signalling drives BRAFi resistance and constitutes a therapeutic target to achieve long-term patient survival under BRAFi. More broadly, the constitutive activation of AhR by endogenous ligands is in line with the ability of UV radiations to generate potent AhR ligands and to favour melanoma onset. Overall design: Total RNA isolated from 12 human melanoma cell lines (501Mel) after different treatments was subjected to multiplexed RNA-sequencing using Illumina NextSeq500 sequencing tehnology.
Sustained activation of the Aryl hydrocarbon Receptor transcription factor promotes resistance to BRAF-inhibitors in melanoma.
Specimen part, Cell line, Subject
View SamplesWe identified recurrent NOTCH1 mutations in 12% of MCLs. 2 out of 10 tested MCL cell lines (Rec-1 and SP-49) were sensitive to inhibition of the NOTCH pathway by gamma-secretase inhibition.
Whole transcriptome sequencing reveals recurrent NOTCH1 mutations in mantle cell lymphoma.
Specimen part, Cell line
View SamplesTo elucidate the effect of the polyphenols contained in alcoholic beverages on the metabolic stress induced by ethanol consumption, four groups of mice were fed for five weeks on Lieber's diet with or without ethanol, with ethanol plus ellagic acid, and with ethanol plus trans-resveratrol. Alcoholic fatty liver was observed in the group fed the ethanol diet but not in those fed the ethanol plus polyphenol diets. Liver transcriptome analysis revealed that the addition of the polyphenols suppressed the expression of the genes related to cell stress that were up-regulated by ethanol alone. Conversely, the polyphenols up-regulated the genes involved in bile acid synthesis, unsaturated fatty acid elongation, and tetrahydrofolate synthesis that were down-regulated by ethanol alone. Because parts of these genes were known to be regulated by the constitutive androstane receptor (CAR), we performed the same experiment in the CAR-deficient mice. As a result, fatty liver was observed not only in the ethanol group but also with the ethanol plus polyphenol groups. In addition, there was no segregation of the gene expression profiles among these groups. These results provide a molecular basis for the prevention of alcohol-induced stress by the polyphenols in alcoholic beverages.
Nuclear receptor-mediated alleviation of alcoholic fatty liver by polyphenols contained in alcoholic beverages.
Sex, Specimen part
View SamplesGene expression data for shRNA PTPN1 knockdown vs. Non-silencing in the classical Hodgkin lymphoma-derived cell line KM-H2
Recurrent somatic mutations of PTPN1 in primary mediastinal B cell lymphoma and Hodgkin lymphoma.
Specimen part, Cell line
View Samples