refine.bio
  • Search
      • Normalized Compendia
      • RNA-seq Sample Compendia
  • Docs
  • About
  • My Dataset
github link
Showing
of 876 results
Sort by

Filters

Technology

Platform

accession-icon GSE37562
hnRNP L-RNA in HeLa
  • organism-icon Homo sapiens
  • sample-icon 6 Downloadable Samples
  • Technology Badge Icon Affymetrix Human Exon 1.0 ST Array [probe set (exon) version (huex10st)

Description

This SuperSeries is composed of the SubSeries listed below.

Publication Title

Crosslinking-immunoprecipitation (iCLIP) analysis reveals global regulatory roles of hnRNP L.

Sample Metadata Fields

Cell line, Treatment

View Samples
accession-icon GSE37561
Expression data from HeLa cells after hnRNP L knockdown (versus luciferase control), including cycloheximide treatment
  • organism-icon Homo sapiens
  • sample-icon 6 Downloadable Samples
  • Technology Badge Icon Affymetrix Human Exon 1.0 ST Array [probe set (exon) version (huex10st)

Description

Transient siRNA-mediated knockdown of hnRNP L, followed by cycloheximide treatment to eliminate NMD.

Publication Title

Crosslinking-immunoprecipitation (iCLIP) analysis reveals global regulatory roles of hnRNP L.

Sample Metadata Fields

Cell line, Treatment

View Samples
accession-icon GSE107033
Endothelial gene expression analysis
  • organism-icon Homo sapiens
  • sample-icon 11 Downloadable Samples
  • Technology Badge Icon Affymetrix Human Exon 1.0 ST Array [transcript (gene) version (huex10st)

Description

This SuperSeries is composed of the SubSeries listed below.

Publication Title

The lncRNA GATA6-AS epigenetically regulates endothelial gene expression via interaction with LOXL2.

Sample Metadata Fields

Specimen part, Treatment

View Samples
accession-icon GSE107032
Endothelial gene expression analysis after silencing LOXL2 using siRNAs
  • organism-icon Homo sapiens
  • sample-icon 7 Downloadable Samples
  • Technology Badge Icon Affymetrix Human Exon 1.0 ST Array [transcript (gene) version (huex10st)

Description

Impaired or excessive growth of endothelial cells contributes to several diseases. However, the functional involvement of regulatory long non-coding RNAs in these processes is not well defined. Here we show that the long non-coding antisense transcript of GATA6 (GATA6-AS) interacts with the epigenetic regulator LOXL2 to regulates endothelial gene expression via changes in histone methylation. Using RNA deep sequencing, we find that GATA6-AS is up-regulated in endothelial cells during hypoxia. Silencing of GATA6-AS diminishes TGF-2-induced endothelial-mesenchymal transition in vitro and promotes formation of blood vessels in mice. We identify LOXL2, known to remove activating H3K4me3 chromatin marks, as a GATA6-AS-associated protein, and reveal a set of angiogenesis-related genes that are inversely regulated by LOXL2 and GATA6-AS silencing. As GATA6-AS silencing reduces H3K4me3 methylation of two of these genes, periostin and cyclooxygenase-2, we conclude that GATA6-AS acts as negative regulator of nuclear LOXL2 function.

Publication Title

The lncRNA GATA6-AS epigenetically regulates endothelial gene expression via interaction with LOXL2.

Sample Metadata Fields

No sample metadata fields

View Samples
accession-icon GSE107031
Endothelial gene expression analysis after silencing the lncRNA GATA6-AS using LNA GapmeRs.
  • organism-icon Homo sapiens
  • sample-icon 4 Downloadable Samples
  • Technology Badge Icon Affymetrix Human Exon 1.0 ST Array [transcript (gene) version (huex10st)

Description

Impaired or excessive growth of endothelial cells contributes to several diseases. However, the functional involvement of regulatory long non-coding RNAs in these processes is not well defined. Here we show that the long non-coding antisense transcript of GATA6 (GATA6-AS) interacts with the epigenetic regulator LOXL2 to regulates endothelial gene expression via changes in histone methylation. Using RNA deep sequencing, we find that GATA6-AS is up-regulated in endothelial cells during hypoxia. Silencing of GATA6-AS diminishes TGF-2-induced endothelial-mesenchymal transition in vitro and promotes formation of blood vessels in mice. We identify LOXL2, known to remove activating H3K4me3 chromatin marks, as a GATA6-AS-associated protein, and reveal a set of angiogenesis-related genes that are inversely regulated by LOXL2 and GATA6-AS silencing. As GATA6-AS silencing reduces H3K4me3 methylation of two of these genes, periostin and cyclooxygenase-2, we conclude that GATA6-AS acts as negative regulator of nuclear LOXL2 function.

Publication Title

The lncRNA GATA6-AS epigenetically regulates endothelial gene expression via interaction with LOXL2.

Sample Metadata Fields

No sample metadata fields

View Samples
accession-icon GSE23711
Expression profiling of nhp6 mutants and wildtype yeast cells (Saccharomyces cerevisiae)
  • organism-icon Saccharomyces cerevisiae
  • sample-icon 6 Downloadable Samples
  • Technology Badge Icon Affymetrix Yeast Genome 2.0 Array (yeast2)

Description

The basic unit of genome packaging is the nucleosome, and nucleosomes have long been proposed to restrict DNA accessibility both to damage and to transcription. However, nucleosome number in cells was considered fixed, and no condition was described where nucleosome number was reduced. We show here that mammalian cells lacking High Mobility Group Box 1 protein (HMGB1) contain a reduced amount of core, linker and variant histones, and a correspondingly reduced number of nucleosomes. Yeast nhp6 mutants lacking NHP6A and B proteins, which are related to HMGB1, also have a reduced amount of histones and fewer nucleosomes. Nucleosome limitation in both mammalian and yeast cells increases the sensitivity of DNA to damage, increases transcription globally, and the relative expression of about 10% of genes. In yeast nhp6 cells the loss of more than one nucleosome in four does not affect the location of nucleosomes and their spacing, but nucleosomal occupancy. The decrease in nucleosomal occupancy is non-uniform, and our results can be modelled assuming that different nucleosomal sites compete for the available histones: sites with high affinity are almost always packaged into nucleosomes both in wt and nucleosome-depleted cells, whereas sites with low affinity are less frequently packaged in nucleosome-depleted cells. We suggest that by modulating the occupancy of nucleosomes histone availability may constitute a novel layer of epigenetic regulation.

Publication Title

Substantial histone reduction modulates genomewide nucleosomal occupancy and global transcriptional output.

Sample Metadata Fields

No sample metadata fields

View Samples
accession-icon GSE110545
Transcriptome data from Eomes-overexpressing Th17 cells
  • organism-icon Homo sapiens
  • sample-icon 4 Downloadable Samples
  • Technology Badge Icon Affymetrix Human Genome U133 Plus 2.0 Array (hgu133plus2)

Description

Th17 cells were sorted ex vivo from PB of healthy donors as CD4+CD161+CCR6+CXCR3-. Following, cells were transduced with a lentiviral vector carrying the Eomes gene or with an empty vector. Infected cells were then enriched by MACS separation using the reporter gene NGFR as selection marker. Finally, cells were frozen for RNA analysis.

Publication Title

Eomes controls the development of Th17-derived (non-classic) Th1 cells during chronic inflammation.

Sample Metadata Fields

Cell line

View Samples
accession-icon GSE31189
Molecular Biomarker Signature for Bladder Cancer Detection
  • organism-icon Homo sapiens
  • sample-icon 88 Downloadable Samples
  • Technology Badge Icon Affymetrix Human Genome U133 Plus 2.0 Array (hgu133plus2)

Description

In this study we applied differential gene expression analysis to exfoliated human urothelia obtained from patients of known bladder disease status. Selected targets from the microarray data were validated in an independent set of samples using a quantitative PCR approach.

Publication Title

A candidate molecular biomarker panel for the detection of bladder cancer.

Sample Metadata Fields

Specimen part, Disease

View Samples
accession-icon GSE24917
Genome wide gene expression profiles of Drosophila l(3)mbt larval brains and cultured tumors
  • organism-icon Drosophila melanogaster
  • sample-icon 33 Downloadable Samples
  • Technology Badge Icon Affymetrix Drosophila Genome 2.0 Array (drosophila2)

Description

Mutants in the Drosophila gene lethal (3) malignant brain tumor cause malignant growth in the larval brain. This data shows the changes in gene expression profile associated to mutations in l(3)mbt, both in situ in third instar larval brains and in tumors cultured for 1 5 and 10 (T1, T5, T10) rounds of allograft culture

Publication Title

Ectopic expression of germline genes drives malignant brain tumor growth in Drosophila.

Sample Metadata Fields

No sample metadata fields

View Samples
accession-icon SRP031504
RNA-seq transcriptome profiling of equine inner cell mass and trophectoderm
  • organism-icon Equus caballus
  • sample-icon 6 Downloadable Samples
  • Technology Badge IconIllumina HiSeq 2000

Description

Transcriptomic analysis of ICM and TE from in vivo-derived equine blastocysts using Illumina sequencing technology Overall design: RNA was extracted from individual equine blastocyst ICM and TE (Arcturus Picopure), cDNA was synthesized and amplified (Nugen Ovation V2) and indexed libraries were created for sequencing (TruSeq DNA V1)

Publication Title

RNA-seq transcriptome profiling of equine inner cell mass and trophectoderm.

Sample Metadata Fields

Specimen part, Subject

View Samples
...

refine.bio is a repository of uniformly processed and normalized, ready-to-use transcriptome data from publicly available sources. refine.bio is a project of the Childhood Cancer Data Lab (CCDL)

fund-icon Fund the CCDL

Developed by the Childhood Cancer Data Lab

Powered by Alex's Lemonade Stand Foundation

Cite refine.bio

Casey S. Greene, Dongbo Hu, Richard W. W. Jones, Stephanie Liu, David S. Mejia, Rob Patro, Stephen R. Piccolo, Ariel Rodriguez Romero, Hirak Sarkar, Candace L. Savonen, Jaclyn N. Taroni, William E. Vauclain, Deepashree Venkatesh Prasad, Kurt G. Wheeler. refine.bio: a resource of uniformly processed publicly available gene expression datasets.
URL: https://www.refine.bio

Note that the contributor list is in alphabetical order as we prepare a manuscript for submission.

BSD 3-Clause LicensePrivacyTerms of UseContact