To gain insight into the signaling pathway(s) required for ABL1/ABL2-dependent bone metastasis, we evaluated the consequences of single or double inactivation of ABL1 and ABL2 on the transcriptome of breast cancer cells. Double ABL1/ABL2 knockdown was required to decrease the levels of p-CrKL by more than 90%, indicative of inactivation of the endogenous ABL kinases. To examine the consequences of depleting the ABL kinases on the transcriptome of metastatic breast cancer cells we employed next generation sequencing (RNAseq) analysis. We found that 180 genes were significantly down-regulated and 40 genes were significantly up-regulated in ABL1/ABL2 knockdown cells. Overall design: Four samples were analyzed control, Abl single knockdown, Arg single knockdown, Abl/Arg double knockdown. Experiments were performed in triplicate.
ABL kinases promote breast cancer osteolytic metastasis by modulating tumor-bone interactions through TAZ and STAT5 signaling.
No sample metadata fields
View SamplesTo gain insight into the signaling pathway(s) required for ABL1/ABL2-dependent non-small cell carcinoma cells metastasis Overall design: Samples were analyzed by pair of either control versus ABL Kinase inhibitor GNF5, Or using scrambled shRNA versus ABL1/ABL2-specific shRNAs.
Inactivation of ABL kinases suppresses non-small cell lung cancer metastasis.
No sample metadata fields
View SamplesCRISPR-Cas9 transcriptional repressors have emerged as robust tools for disrupting gene regulation in vitro but have not yet been adapted for delivery in adult animal models. Here we created an S. aureus Cas9-based transcriptional repressor (dSaCas9KRAB) compatible with adeno-associated viral (AAV) delivery. To evaluate dSaCas9KRAB efficacy for targeting an endogenous gene in vivo, we silenced transcription of Pcsk9, a regulator of cholesterol levels, in the liver of adult mice. Systemic administration of a dual-vector AAV8 system expressing dSaCas9KRAB and a Pcsk9-targeting guide RNA (gRNA) resulted in significant reductions of serum PCSK9 and cholesterol levels. Despite a moderate host response to dSaCas9KRAB expression, PCSK9 repression was maintained for 24 weeks after a single treatment, demonstrating the potential for long-term gene silencing in post-mitotic tissues with dSaCas9KRAB. In vivo programmable gene silencing enables studies that link gene regulation to complex phenotypes and expands the CRISPR-Cas9 genetic perturbation toolbox for basic research and gene therapy applications. Overall design: C57Bl/6 wild-type mice were treated with AAVs expressing dSaCas9-KRAB and/or a Pcsk9-targeting gRNA by tail-vein injection. Six weeks after treatment, we harvested the livers of treated mice and performed mRNA-sequencing.
RNA-guided transcriptional silencing in vivo with S. aureus CRISPR-Cas9 repressors.
Specimen part, Cell line, Subject
View SamplesSecond-hand smoke (SHS) exposure during pregnancy has adverse effects on offspring. We used microarrays to characterize the gene expression changes caused by in-utero exposure and adult exposure to SHS in adult mouse lungs.
In utero exposure to second-hand smoke aggravates adult responses to irritants: adult second-hand smoke.
Sex, Age, Specimen part, Treatment
View SamplesSHS exposure during pregnancy has adverse effects on offspring.
In utero exposure to second-hand smoke aggravates the response to ovalbumin in adult mice.
Sex, Specimen part
View SamplesThe present study was constructed to confirm previous findings that mice on a high fat diet (HFD) treated by subcutaneous injection with exenatide (EXE) at 3g/kg once daily for 6 weeks develop exocrine pancreatic injury (Rouse et al. 2014). The present study included 12 weeks of EXE exposure at multiple concentrations (3, 10, or 30 g/kg) with multiple endpoints (histopathology evaluations, immunoassay for cytokines, immunostaining of the pancreas, serum chemistries and measurement of trypsin, amylase, and, lipase, and gene expression profiles). Time- and dose-dependent exocrine pancreatic injury was observed in mice associated with EXE exposure in a HFD environment. The time- and dose-dependent morphological changes identified in the pancreas involved acinar cell injury and death (autophagy, apoptosis, necrosis, and atrophy), cell adaptations (hypertrophy and hyperplasia), and cell survival (regeneration) accompanied with varying degrees of inflammatory response leading to secondary injury in pancreatic blood vessels, ducts, and adipose tissues. Gene expression profiles supported the presence of increased signaling for cell survival and altered lipid metabolism. The potential for EXE to cause acute or early chronic pancreatic injury was identified in a HFD environment. In human disease, the influence of pancreatitis risk factors or pre-existing chronic pancreatitis on this injury potential requires further investigation.
Extended exenatide administration enhances lipid metabolism and exacerbates pancreatic injury in mice on a high fat, high carbohydrate diet.
Sex, Specimen part
View SamplesMeiotic recombination is initiated by the Spo11 endonuclease, which directs DNA double strand breaks at discrete regions in the genome coined hotspots. Here we report the profiles and dynamics of histone modifications at the cores of mouse recombination hotspots in early meiotic prophase. To define the spectrum of possible regulators of histone methylation and acetylation at all stages of meiosis I, expression analyses of histone acetylases/deacetylases (HATs/HDACs) and and HMTs/HDMTs genes when comparing those expressed in spermatogonia, pre-leptotene and leptotene/zygotene versus pachytene meiotic stages.
Functional Roles of Acetylated Histone Marks at Mouse Meiotic Recombination Hot Spots.
Sex, Specimen part
View SamplesThis SuperSeries is composed of the SubSeries listed below.
Functional Roles of Acetylated Histone Marks at Mouse Meiotic Recombination Hot Spots.
Sex, Age, Specimen part
View SamplesBreast cancer cell line MDA-MB-231 was treated with DMSO or UF010, a novel HDAC inhibitor for 24 hours. The impact of UF010 treatment on global gene expression was determined.
Identification of histone deacetylase inhibitors with benzoylhydrazide scaffold that selectively inhibit class I histone deacetylases.
Specimen part, Cell line
View SamplesThe morphogen and mitogen, Sonic Hedgehog, activates a Gli1-dependent transcription program that drives proliferation of granule neuron progenitors (GNPs) within the external germinal layer of the postnatally developing cerebellum. Medulloblastomas with mutations activating the Sonic Hedgehog signaling pathway preferentially arise within the external germinal layer, and the tumor cells closely resemble GNPs. Atoh1/Math1, a basic helix-loop-helix transcription factor essential for GNP histogenesis, does not induce medulloblastomas when expressed in primary mouse GNPs that are explanted from the early postnatal cerebellum and transplanted back into the brains of nave mice. However, enforced expression of Atoh1 in primary GNPs enhances the oncogenicity of cells overexpressing Gli1 by almost three orders of magnitude. Unlike Gli1, Atoh1 cannot support GNP proliferation in the absence of Sonic Hedgehog signaling and does not govern expression of canonical cell cycle genes. Instead, Atoh1 maintains GNPs in a Sonic Hedgehog-responsive state by regulating genes that trigger neuronal differentiation, including many expressed in response to bone morphogenic protein-4. Therefore, by targeting multiple genes regulating the differentiation state of GNPs, Atoh1 collaborates with the pro-proliferative Gli1-dependent transcriptional program to influence medulloblastoma development.
Atoh1 inhibits neuronal differentiation and collaborates with Gli1 to generate medulloblastoma-initiating cells.
Age, Specimen part, Treatment
View Samples