Mycobacterium abscessus is an emerging pathogen causing pulmonary infections in those with inflammatory lung disorders, such as Cystic Fibrosis (CF), and is associated with the highest fatality rate among rapidly growing mycobacteria (RGM). Phenotypically, MAB manifests as either a Smooth (MAB-S) or a Rough (MAB-R) morphotype, which differ in their levels of cell wall glycopeptidolipids (GPLs) and in their pathogenicity in vivo. As one of the primary immune cells encountered by MAB, we sought to examine the early transcriptional events within macrophages, following infection with both MAB-S or MAB-R. We sampled the small RNA (sRNA) transcriptome of THP-1-derived macrophages infected with both MAB-R and MAB-S at 1, 4 and 24 hours post-infection (hpi) using RNA-seq. MAB-S elicited a more robust transcriptional response at the miRNA level, reflecting higher cytokine levels in culture supernatants. However, and a direct comparison identified no differentially expressed miRNAs between MAB-R- and MAB-S-infected cells. Most of the induced miRNAs have previously been associated with mycobacterial infection and overall miRNA expression patterns were similarly highly correlated between the morphotypes. Overall design: THP-1-derived macrophages were infected in parallel with the MAB-R and MAB-S morphotypes. Poly-A selected RNAs were purified and sequenced at 1, 4 and 24 hours post-infection, and compared with uninfected controls.
High-throughput transcriptomics reveals common and strain-specific responses of human macrophages to infection with Mycobacterium abscessus Smooth and Rough variants.
No sample metadata fields
View SamplesNon-typhoidal Salmonella (NTS) are among of the most important food-borne pathogens. Recently, a highly invasive multi-drug resistant S. Typhimurium of a distinct multilocus sequence type (MLST), ST313, has emerged across sub-Saharan Africa as a major cause of lethal bacteraemia in children and immunosuppressed adults. Encounters between dendritic cells (DCs) and invading bacteria determine the course of infection but whether or how ST313 might usurp DC mediated defence has not been reported. Here we utilised fluorescently labelled invasive and non-invasive strains of Salmonella combined with single-cell RNA sequencing to study the transcriptomes of individual infected and bystander DCs. The transcriptomes displayed a repertoire of cell instrinsic and extrinsic innate response states that differed between invasive and non-invasive strains. Gene expression heterogeneity was increased in DCs challenged with invasive Salmonella. DCs exposed but not harbouring invasive Salmonella exhibited a hyper-activated profile that likely facilitates trafficking of infected cells and dissemination of internalised intact bacteria. In contrast, invasive Salmonella containing DCs demonstrate reprogramming of trafficking genes required to avoid autophagic destruction. Furthermore, these cells displayed differential expression of tolerogenic IL10 and MARCH1 enabling CD83 mediated adaptive immune evasion. Altogether our data illustrate pathogen cell-to cell variability directed by a Salmonella invasive strain highlighting potential mechanisms of host adaption with implications for dissemination in vivo. Overall design: Single-cell RNA sequencing (SMARTSeq2) of 373 human monocyte derived dendritic cells infected with S. Typhimurium strain LT2 or D23580 or left uninfected
Invasive Salmonella exploits divergent immune evasion strategies in infected and bystander dendritic cell subsets.
Subject, Time
View SamplesMycobacterium bovis, the agent of bovine tuberculosis, causes an estimated $3 billion annual losses to global agriculture due, in part, to the limitations of current diagnostics. Development of next-generation diagnostics requires a greater understanding of the interaction between the pathogen and the bovine host. Therefore, to explore the early response of the alveolar macrophage to infection, we report the first application of RNA-sequencing to define, in exquisite detail, the transcriptomes of M. bovis-infected and non-infected alveolar macrophages from ten calves at 2, 6, 24 and 48?hours post-infection. Differentially expressed sense genes were detected at these time points that revealed enrichment of innate immune signalling functions, and transcriptional suppression of host defence mechanisms (e.g., lysosome maturation). We also detected differentially expressed natural antisense transcripts, which may play a role in subverting innate immune mechanisms following infection. Furthermore, we report differential expression of novel bovine genes, some of which have immune-related functions based on orthology with human proteins. This is the first in-depth transcriptomics investigation of the alveolar macrophage response to the early stages of M. bovis infection and reveals complex patterns of gene expression and regulation that underlie the immunomodulatory mechanisms used by M. bovis to evade host defence mechanisms. Overall design: Whole-transcriptome analysis of M. bovis- and non-infected alveolar macrophages from ten calves (n = 10) at 2, 6, 24 and 48 hours (h) post-infection using RNA-sequencing (RNA-seq).
RNA sequencing provides exquisite insight into the manipulation of the alveolar macrophage by tubercle bacilli.
Sex, Specimen part, Subject, Time
View SamplesNon-typhoidal Salmonella (NTS) are among of the most important food-borne pathogens. Recently, a highly invasive multi-drug resistant S. Typhimurium of a distinct multilocus sequence type (MLST), ST313, has emerged across sub-Saharan Africa as a major cause of lethal bacteraemia in children and immunosuppressed adults. Encounters between dendritic cells (DCs) and invading bacteria determine the course of infection but whether or how ST313 might usurp DC mediated defence has not been reported. Here we utilised fluorescently labelled invasive and non-invasive strains of Salmonella combined with single-cell RNA sequencing to study the transcriptomes of individual infected and bystander DCs. The transcriptomes displayed a repertoire of cell instrinsic and extrinsic innate response states that differed between invasive and non-invasive strains. Gene expression heterogeneity was increased in DCs challenged with invasive Salmonella. DCs exposed but not harbouring invasive Salmonella exhibited a hyper-activated profile that likely facilitates trafficking of infected cells and dissemination of internalised intact bacteria. In contrast, invasive Salmonella containing DCs demonstrate reprogramming of trafficking genes required to avoid autophagic destruction. Furthermore, these cells displayed differential expression of tolerogenic IL10 and MARCH1 enabling CD83 mediated adaptive immune evasion. Altogether our data illustrate pathogen cell-to cell variability directed by a Salmonella invasive strain highlighting potential mechanisms of host adaption with implications for dissemination in vivo. Overall design: RNA-seq of mini-bulks (5000 cells) of human monocyte derived dendritic cells infected with S. Typhimurium strain LT2 or D23580 or left uninfected
Invasive Salmonella exploits divergent immune evasion strategies in infected and bystander dendritic cell subsets.
Subject, Time
View SamplesThe balance between tolerogenic and inflammatory responses determines immune homeostasis in the gut. Dysbiosis and a defective host defense against invading intestinal bacteria can shift this balance via bacterial-derived metabolites and trigger chronic inflammation. We show that the short chain fatty acid butyrate modulates monocyte to macrophage differentiation by promoting antimicrobial effector functions. The presence of butyrate modulates antimicrobial activity via a shift in macrophage metabolism and reduction in mTOR activity. This mechanism is furthermore dependent on the inhibitory function of butyrate on histone deacetylase 3 (HDAC3) driving transcription of a set of antimicrobial peptides including calprotectin. The increased antimicrobial activity against several bacterial species is not associated with increased production of conventional cytokines. Butyrate imprints antimicrobial activity of intestinal macrophages in vivo. Our data suggest that commensal bacteria derived butyrate stabilize gut homeostasis by promoting antimicrobial host defense pathways in monocytes that differentiate into intestinal macrophages. Overall design: Paired samples of control and butyrate-treated macrophages prepared from two individuals.
The Short Chain Fatty Acid Butyrate Imprints an Antimicrobial Program in Macrophages.
Specimen part, Subject
View SamplesThis SuperSeries is composed of the SubSeries listed below.
Double-stranded microRNA mimics can induce length- and passenger strand-dependent effects in a cell type-specific manner.
Cell line
View SamplesExperiment 1 - miR-155 and miR-199 Phenotype
Double-stranded microRNA mimics can induce length- and passenger strand-dependent effects in a cell type-specific manner.
Cell line
View SamplesExperiment 2 - MiRNA mimics have a length and passenger strand specific effect
Double-stranded microRNA mimics can induce length- and passenger strand-dependent effects in a cell type-specific manner.
Cell line
View SamplesIn this study, zebrafish ZF4 and PAC2 cells were seeded in 0.5% or 1% FCS, respectively, and grown to 85% confluence and subsequently cultured for 24 hours without serum. Then they were treated with either medium without serum or medium with serum (ZF4 in 10% FCS and PAC2 in 15% FCS).After 6 hours, RNA was extracted from the cells and analyzed using the Affymetrix GeneChip Zebrafish Genome Array (GeneChip 430). There are 15502 oligonucleotide sets on each Affymetrix chip, 14895 of which can be linked to a UniGene assignment (Unigene data set 06-12-2005).
Genetic and transcriptome characterization of model zebrafish cell lines.
Cell line, Compound
View SamplesMaternal obesity during the pre-implantation period leads to a pro-inflammatory milieu in the ovaries. We conducted a global transcriptomic profiling in ovaries from TEN fed rats during the pre-implantation period. Microarray analysis revealed that obesity lead to increased expression of genes related to inflammation, decreased glucose transporters, and dysregulation of ovarian function-related genes in the ovaries. Our results suggest maternal obesity led to an up-regulation of inflammatory genes and Egr-1 protien expression in peri-implantation ovarian tissue, and a concurrent down-regulation of glucose transporters mRNA and AKT and PI3K protein levels.
Maternal obesity is associated with ovarian inflammation and upregulation of early growth response factor 1.
Sex, Specimen part
View Samples