Pilocytic astrocytomas (PA) are the most common brain tumor in pediatric patients and can cause significant morbidity, including chronic neurological deficiencies. They are characterized by activating alterations in the mitogen-activated protein kinase (MAPK) pathway, but little else is known about their development. To further define their molecular development, we analysed the global DNA methylation profiles of 61 PAs and 6 normal cerebellum samples and integrated this data with transcriptome profiling. These data revealed two subgroups of PA that separate according to tumor location (infratentorial versus supratentorial), and identified key neural developmental genes that are differentially methylated between the two groups. Significant expression differences were identified for the majority of differentially methylated genes, and these were unexpectedly associated with a strong positive correlation between methylation and expression. We also identified a large number of differentially methylated/expressed genes between cerebellar PAs and normal cerebellum, which included additional developmental genes.
Differential expression and methylation of brain developmental genes define location-specific subsets of pilocytic astrocytoma.
Sex, Specimen part
View SamplesLRAT knockout mice on vitamin A sufficient or deficient diets were compared to age-matched wildtype mice on a vitamin A sufficient diet
Effects of vitamin A deficiency in the postnatal mouse heart: role of hepatic retinoid stores.
Sex, Specimen part
View SamplesLRAT knockout mice on vitamin A sufficient or deficient diets were compared to age and gender matched wildtype mice on a vitamin A sufficient diet
Effects of vitamin A deficiency in the postnatal mouse heart: role of hepatic retinoid stores.
Sex, Specimen part
View SamplesThis SuperSeries is composed of the SubSeries listed below.
Effects of vitamin A deficiency in the postnatal mouse heart: role of hepatic retinoid stores.
Sex, Specimen part
View SamplesNeuregulin-1 (NRG-1) is a paracrine factor critical for cardiac development. We have been examining whether the recombinant NRG-1 isoform known as glial growth factor 2 (GGF2) has therapeutic potential for heart failure. In both small and large animals after experimental myocardial infarction (MI) we have found that GGF2 treatment improves myocardial function and limits progressive myocardial remodeling. To understand potential mechanisms for this effect, we compared gene expression in swine by microarray analysis.
Anti-remodeling and anti-fibrotic effects of the neuregulin-1β glial growth factor 2 in a large animal model of heart failure.
Specimen part, Disease, Treatment
View SamplesPurpose: Myxopapillary ependymoma (MPE) is a distinct histological variant of ependymoma arising commonly in the spinal cord. Despite an overall favorable prognosis, distant metastases, subarachnoid dissemination, and late recurrences have been reported. Currently the only effective treatment for MPE is gross-total resection. We characterized the genomic and transcriptional landscape of spinal ependymomas in an effort to delineate the genetic basis of this disease and identify new leads for therapy.
Spinal Myxopapillary Ependymomas Demonstrate a Warburg Phenotype.
Sex, Specimen part, Disease stage
View SamplesGene expression (mRNA) profiling of human ependymomas
Delineation of two clinically and molecularly distinct subgroups of posterior fossa ependymoma.
Sex, Age, Specimen part
View SamplesPediatric high-grade gliomas (pHGGs) harboring the K27M mutation of H3F3A (histone H3.3) are characterized by global reduction of the repressive histone mark H3K27me3 and DNA hypomethylation.
Reduced H3K27me3 and DNA hypomethylation are major drivers of gene expression in K27M mutant pediatric high-grade gliomas.
Sex, Age, Disease, Disease stage
View SamplesEpendymal tumors across age groups have been classified and graded solely by histopathology. It is, however, commonly accepted that this classification scheme has limited clinical utility based on its lack of reproducibility in predicting patient outcome. We aimed at establishing a reliable molecular classification using DNA methylation fingerprints and gene expression data of the tumors on a large cohort of 500 tumors. Nine robust molecular subgroups, three in each anatomic compartment of the central nervous system (CNS), were identified.
Molecular Classification of Ependymal Tumors across All CNS Compartments, Histopathological Grades, and Age Groups.
Sex, Specimen part
View SamplesWhole exome sequencing identified frequent driver mutations in a series of paediatric glioblastomas
Driver mutations in histone H3.3 and chromatin remodelling genes in paediatric glioblastoma.
Sex, Age, Disease, Disease stage
View Samples