This SuperSeries is composed of the SubSeries listed below.
Metabolic reprogramming induces resistance to anti-NOTCH1 therapies in T cell acute lymphoblastic leukemia.
Specimen part
View SamplesTo investigate the underlying mechanisms mediating resistance to NOTCH inhibition in Pten-null T-ALL tumor cells we performed gene expression profiling of isogenic Pten-positive and Pten-deleted leukemia lymphoblasts after acute treatment with DBZ in vivo.
Metabolic reprogramming induces resistance to anti-NOTCH1 therapies in T cell acute lymphoblastic leukemia.
Specimen part
View SamplesThe discovery of significant heterogeneity in the self-renewal durability of adult haematopoietic stem cells (HSCs) has challenged our understanding of the molecules involved in population maintenance throughout life. Gene expression studies in bulk populations are difficult to interpret since multiple HSC subtypes are present and HSC purity is typically less than 50% of the input cell population. Numerous groups have therefore turned to studying gene expression profiles of single HSCs, but again these studies are limited by the purity of the input fraction and an inability to directly ascribe a molecular program to a durable self-renewing HSC. Here we combine single cell functional assays with flow cytometric index sorting and single cell gene expression assays to gain the first insight into the gene expression program of HSCs that possess durable self-renewal. This approach can be used in other stem cell systems and sets the stage for linking key molecules with defined cellular functions. Overall design: single-cell RNA-Seq of haematopoietic stem cells
Combined Single-Cell Functional and Gene Expression Analysis Resolves Heterogeneity within Stem Cell Populations.
No sample metadata fields
View SamplesThis SuperSeries is composed of the SubSeries listed below.
Aberrant epigenome in iPSC-derived dopaminergic neurons from Parkinson's disease patients.
Sex, Specimen part, Disease, Disease stage, Subject
View SamplesWe analysed the RNA profile of IPSC-derived dopaminergic neurons from idiophatic and genetic form (LRRK2) of Parkinsons disease (PD). Both, idiopathic and genetic form of the disease show similar expression alterations and were merged in one whole PD group. We found 437 differentially expressed genes (DEGs) in the PD group as a whole. Up-regulated DEGs (n=254) encompassed genes involved in neural functions and transcription factor functions whereas down-regulated DEGs (n=183) affected basic homeostasis. These data point towards the presence of gene - and also protein - expression changes in DAn from PD patients which co-occur simultaneously along with DNA methylation changes.
Aberrant epigenome in iPSC-derived dopaminergic neurons from Parkinson's disease patients.
Sex, Specimen part, Disease, Disease stage
View SamplesAlthough protein acetylation is widely observed, it has been associated with few specific regulatory functions making it poorly understood. To interrogate its functionality, we analyzed the acetylome in Escherichia coli knockout mutants of cobB, the only known sirtuin-like deacetylase, and patZ, the best-known protein acetyltransferase. For four growth conditions, more than 2,000 unique acetylated peptides, belonging to 809 proteins, were identified and differentially quantified. Nearly 65% of these proteins are related to metabolism. The global activity of CobB contributes to the deacetylation of a large number of substrates and has a major impact on physiology. Apart from the regulation of acetyl-CoA synthetase, we found that CobB-controlled acetylation of isocitrate lyase contributes to the fine-tuning of the glyoxylate shunt. Acetylation of the transcription factor RcsB prevents DNA binding, activating flagella biosynthesis and motility, and increases acid stress susceptibility. Surprisingly, deletion of patZ increased acetylation in acetate cultures, which suggests that it regulates the levels of acetylating agents. The results presented offer new insights into functional roles of protein acetylation in metabolic fitness and global cell regulation.
Protein acetylation affects acetate metabolism, motility and acid stress response in Escherichia coli.
No sample metadata fields
View SamplesHeart failure (HF) is a major health and economic burden in developed countries. It has been proposed that the pathogenesis of HF may involve the action of mitochondria. Here we evaluate three different models of HF: tachycardiomyopathy, HF with preserved left ventricular (LV) ejection fraction, and LV myocardial ischemia and hypertrophy. Regardless of whether LVEF is preserved or reduced, our results indicate that the three models share common molecular features: an increase in mitochondrial ROS, followed by ultrastructural alterations in the mitochondrial cristae and loss of mitochondrial integrity that lead to cardiomyocyte death. We show that the ablation of the mitochondrial protease OMA1 averts cardiomyocyte death in all three experimental HF models, and thus, plays a direct role in cardiomyocyte protection. This finding identifies OMA1 as a potential target for preventing the progression of myocardial damage in HF associated to a variety of etiologies. Overall design: Transcriptome analysis of 12-week-old wild type mice versus OMA1 KO mice under control (non-treated) or treated with Isoproterenol chronically (implanted minipumps) for 7 days in heart tissue. The nuclear genetic background for both genotypes is C57BL/6JOlaHsd.
Ablation of the stress protease OMA1 protects against heart failure in mice.
Sex, Age, Specimen part, Treatment, Subject
View SamplesWe describe a new mutant allele of the ACTIN2 gene with enhanced actin dynamics, displaying a broad array of twisting and bending phenotypes that resemble BR-treated plants. Moreover, auxin transcriptional regulation is enhanced on the mutant background, supporting the idea that shaping actin filaments is sufficient to modulate BR-mediated auxin responsiveness. The actin cytoskeleton thus functions as a scaffold for integration of auxin and BR signaling pathways.
Role of actin cytoskeleton in brassinosteroid signaling and in its integration with the auxin response in plants.
No sample metadata fields
View SamplesStress constantly challenges plant adaptation to the environment. Of all stress types, arsenic was a major threat during the early evolution of plants. The most prevalent chemical form of arsenic is arsenate, whose similarity to phosphate renders it easily incorporated into cells via the phosphate transporters. Here we found that arsenate stress provokes a notable transposon burst in plants, in coordination with arsenate/phosphate transporter repression, which immediately restricts arsenate uptake. This repression was accompanied by delocalization of the phosphate transporter from the plasma membrane. When arsenate was removed, the system rapidly restored transcriptional expression and membrane localization of the transporter. We identify WRKY6 as an arsenate-responsive transcription factor that mediates arsenate/phosphate transporter gene expression and restricts arsenate-induced transposon activation. Plants therefore have a dual WRKY-dependent signaling mechanism that modulates arsenate uptake and transposon expression, providing a coordinated strategy for arsenate tolerance and transposon gene silencing.
WRKY6 transcription factor restricts arsenate uptake and transposon activation in Arabidopsis.
Time
View SamplesThe aim of this data set is to perform a differential expression analysis between wild type eye-antennal imaginal disc and discs that are homozygous glass mutant gl[60j]. This data set is used to validate Glass target gene predictions identified by i-cisTarget on a set of conserved eye-specific genes. Overall design: RNA-seq was performed in eye-antennal imaginal discs of two D.melanogaster wild-type strains (Canton S and strain RAL-208 (Jordan et al. 2007, Ayroles et al. 2009)), representing two biological replicates; and in glass mutant (gl[60j]) discs for two technical replicates.
Comparative motif discovery combined with comparative transcriptomics yields accurate targetome and enhancer predictions.
Specimen part, Cell line, Subject
View Samples